A recursive construction of doubly resolvable Steiner quadruple systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bose R.C., Shrikhande S.S., Parker E.T.: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Can. J. Math. 12, 189–203 (1960).
Booth T.R.: A resolvable quadruple system of order 20. Ars Comb. 5, 121–125 (1978).
de Vries H.L.: On orthogonal resolutions of the classical Steiner quadruple system SQS(16). Des. Codes Cryptogr. 48, 287–292 (2008).
Dinitz J.H., Stinson D.R.: Room squares and related designs. In: Dinitz J.H., Stinson D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 593–631. Wiley, New York (1992).
Greenwell D.L., Lindner C.C.: Some remarks on resolvable quadruple systems. Ars Comb. 6, 215–221 (1978).
Hartman A.: Resolvable Steiner quadruple systems. Ars Comb. 9, 263–273 (1980).
Hartman A.: Tripling quadruple systems. Ars Comb. 10, 255–309 (1980).
Hartman A.: Doubly and orthogonally resolvable quadruple systems, Ars Combin., Combinatorial Mathematics, VII, Proc. Seventh Australian Conf., Lecture Notes in Math., Univ. Newcastle, Newcastle,: vol. 829. Springer, Berlin, pp. 157–164 (1979).
Hartman A.: The existence of resolvable Steiner quadruple systems. J. Comb. Theory A 44, 182–206 (1987).
Hartman A., Phelps K.T.: Steiner quadruple systems. In: Dinitz J.H., Stinson D.R. (eds.) Contemporary Design Theory, pp. 205–240. Weiley, New York (1992).
Ji L., Zhu L.: Resolvable Steiner quadruple systems for the last 23 orders. SIAM J. Discret. Math. 19, 420–432 (2005).
Lindner C.C., Rodger C.A.: Design Theory. CRC Press, Boca Raton (2009).
Meng Z.: Doubly resolvable Steiner quadruple systems and related designs. Des. Codes Cryptogr. 84, 325–343 (2017).
Meng Z., Du B.: Resolvable candelabra quadruple systems with three groups. J. Comb. Des. 19, 247–267 (2011).
Meng Z., Zhang B., Wu Z.: Constructions of doubly resolvable Steiner quadruple systems. Des. Codes Cryptogr. 89, 781–795 (2021).
Mills W.H.: On the existence of H designs. Congr. Numer. 79, 129–141 (1990).
Stern G., Lenz H.: Steiner triple systems with given subspaces, another proof of the Doyen-Wilson Theorem. Bull. Un. Mal. Ital. A 17, 109–114 (1980).
Zhang X., Ge G.: Existence of resolvable H-designs with group sizes 2, 3, 4 and 6. Des. Codes Cryptogr. 55, 81–101 (2010).