A recursive construction of doubly resolvable Steiner quadruple systems

Zhaoping Meng1, Qiang Gao2, Zhanggui Wu3
1College of Information Engineering, Shandong Youth University of Political Science, Jinan, 250103, People’s Republic of China
2School of Mathematics, Qilu Normal University, Jinan, 250103, People’s Republic of China
3School of Electronic and Information Engineering, Fujian Polytechnic Normal University, Fuzhou, 350300, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bose R.C., Shrikhande S.S., Parker E.T.: Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler’s conjecture. Can. J. Math. 12, 189–203 (1960).

Booth T.R.: A resolvable quadruple system of order 20. Ars Comb. 5, 121–125 (1978).

de Vries H.L.: On orthogonal resolutions of the classical Steiner quadruple system SQS(16). Des. Codes Cryptogr. 48, 287–292 (2008).

Dinitz J.H., Stinson D.R.: Room squares and related designs. In: Dinitz J.H., Stinson D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 593–631. Wiley, New York (1992).

Greenwell D.L., Lindner C.C.: Some remarks on resolvable quadruple systems. Ars Comb. 6, 215–221 (1978).

Hartman A.: Resolvable Steiner quadruple systems. Ars Comb. 9, 263–273 (1980).

Hartman A.: Tripling quadruple systems. Ars Comb. 10, 255–309 (1980).

Hartman A.: Doubly and orthogonally resolvable quadruple systems, Ars Combin., Combinatorial Mathematics, VII, Proc. Seventh Australian Conf., Lecture Notes in Math., Univ. Newcastle, Newcastle,: vol. 829. Springer, Berlin, pp. 157–164 (1979).

Hartman A.: The existence of resolvable Steiner quadruple systems. J. Comb. Theory A 44, 182–206 (1987).

Hartman A., Phelps K.T.: Steiner quadruple systems. In: Dinitz J.H., Stinson D.R. (eds.) Contemporary Design Theory, pp. 205–240. Weiley, New York (1992).

Hung S.H.Y., Mendelsohn N.S.: On howell designs. J. Comb. Theory A 16, 174–198 (1974).

Ji L.: An improvement on H design. J. Comb. Des. 17, 25–35 (2009).

Ji L.: A complete solution to existence of H designs. J. Comb. Des. 27, 75–81 (2019).

Ji L., Zhu L.: Resolvable Steiner quadruple systems for the last 23 orders. SIAM J. Discret. Math. 19, 420–432 (2005).

Lindner C.C., Rodger C.A.: Design Theory. CRC Press, Boca Raton (2009).

Meng Z.: Doubly resolvable H designs. Graphs Comb. 32, 2563–2574 (2016).

Meng Z.: Doubly resolvable Steiner quadruple systems and related designs. Des. Codes Cryptogr. 84, 325–343 (2017).

Meng Z., Du B.: Resolvable candelabra quadruple systems with three groups. J. Comb. Des. 19, 247–267 (2011).

Meng Z., Zhang B., Wu Z.: Constructions of doubly resolvable Steiner quadruple systems. Des. Codes Cryptogr. 89, 781–795 (2021).

Mills W.H.: On the existence of H designs. Congr. Numer. 79, 129–141 (1990).

Stern G., Lenz H.: Steiner triple systems with given subspaces, another proof of the Doyen-Wilson Theorem. Bull. Un. Mal. Ital. A 17, 109–114 (1980).

Zhang X., Ge G.: Existence of resolvable H-designs with group sizes 2, 3, 4 and 6. Des. Codes Cryptogr. 55, 81–101 (2010).

Zhang X., Ge G.: H-designs with the properties of resolvability or (1,2)-resolvability. Des. Codes Cryptogr. 57, 225–256 (2010).