A recurrent neural network for variable admittance control in human–robot cooperation: simultaneously and online adjustment of the virtual damping and Inertia parameters
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom. 15(3), 465–474 (1999)
Chang, F., Chang, L., Huang, H.: Real-time recurrent learning neural network for stream-flow forecasting. Hydrol. Process. 16(13), 2577–2588 (2002)
Chiang, Y.M., Chang, L.C., Chang, F.J.: Comparison of static-feedforward and dynamic-feedback neural networks for rainfall-runoff modeling. J. Hydrol. 290(3–4), 297–311 (2004)
Colonnese, N., Okamura, A.M.: M-width: stability, noise characterization, and accuracy of rendering virtual mass. Int. J. Rob. Res. 34(6), 781–798 (2015)
Dautenhahn, K.: Methodology & themes of human-robot interaction : a growing research field. Int. J. Adv. Robot. Syst. 4(1), 103–108 (2007)
De Santis, A., Siciliano, B., De Luca, A., Bicchi, A.: An atlas of physical human—robot interaction. Mech. Mach. Theory 43(3), 253–270 (2008)
Dimeas, F., Aspragathos, N.: Online stability in human-robot cooperation with admittance control. IEEE Trans. Haptics 9(2), 267–278 (2016)
Dimeas F., Aspragathos, N.: Fuzzy Learning Variable Admittance Control for Human-Robot Cooperation, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014, pp. 4770–4775.
Du, Z., Wang, W., Yan, Z., Dong, W., Wang, W.: Variable admittance control based on fuzzy reinforcement learning for minimally invasive surgery manipulator. Sensors 17(4), 1–15 (2017)
Duchaine V., Gosselin M., General Model of Human-Robot Cooperation Using a Novel Velocity Based Variable Impedance Control, in Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’07), 2007, pp. 446–451.
Elbelady, S.A., Fawaz, H.E., Aziz, A.M.A.: Online self tuning PID control using neural network for tracking control of a pneumatic cylinder using pulse width modulation piloted digital valves. Int. J. Mech. Mechatronics Eng. IJMME-IJENS 16(3), 123–136 (2016)
Eski, I., Erkaya, S., Savas, S., Yildirim, S.: Fault detection on robot manipulators using artificial neural networks. Robot. Comput. Integr. Manuf. 27(1), 115–123 (2011)
Flash, T., Hogan, N.: The coordination of arm movements: an experimentally confirmed mathematical model. J. Neurosci. 5(7), 1688–1703 (1985)
Gopinathan, S., Mohammadi, P., Steil, J. J.: Improved Human-Robot Interaction : A manipulability based approach, in ICRA 2018 Workshop on Ergonomic Physical Human-Robot Collaboration, 2018.
Haykin, S.: Neural Networks: A Comprehensive Foundation, Second Edi. Pearson Prentice Hall PTR, Upper Saddle River (1998)
Haykin, S.: Neural Networks and Learning Machines. Third Edit, Pearson (2009)
Hernández-Alvarado, R., García-Valdovinos, L. G., Salgado-Jiménez, T., Gómez-Espinosa, A., Fonseca-Navarro, F.: Neural network-based self-tuning PID control for underwater vehicles. Sensors, 16(9): 1429, pp. 1–18 (2016)
Hogan, N.: Impedance control: an approach to manipulation: Part I theory; Part II implementation; Part III applications. J. Dynamlc Syst. Meas. Contral 107(1), 1–24 (1985)
Ito, M., Noda, K., Hoshino, Y., Tani, J.: Dynamic and interactive generation of object handling behaviors by a small humanoid robot using a dynamic neural network model. Neural Netw 19(3), 323–337 (2006)
Jaeger, H.: A tutorial on training recurrent neural networks , covering BPPT, RTRL , EKF and the " echo state network " approach, 2002.
Jordan, M.I.: Serial order: a parallel distributed processing approach. San Diego, Calif (1986)
Keemink, A. Q., Van Der Kooij, H., Stienen, A. H.: Admittance control for physical human—robot interaction, Int. J. Rob. Res., pp. 1–24, 2018.
Khatib, O., Yokoi, K., Brock, O., Chang, K., Casal, A.: Robots in human environments : basic autonomous capabilities. Int. J. Rob. Res. 18(7), 684–696 (1999)
Kwon, S., Kim, J.: Real-time upper limb motion estimation from surface electromyography and joint angular velocities using an artificial neural network for human—machine cooperation. IEEE Trans. Inf. Technol. Biomed. 15(4), 522–530 (2011)
Landi, C.T., Ferraguti, F., Sabattini, L., Secchi, C., Fantuzzi, C.: Admittance control parameter adaptation for physical human-robot interaction. IEEE Int. Conf. Robot. Automation (ICRA) 2017, 2911–2916 (2017)
Landi, C.T., Ferraguti, F., Sabattini, L., Secchi, C., Bonf, M., Fantuzzi, C.: Variable admittance control preventing undesired oscillating behaviors in physical human-robot interaction. IEEE/RSJ Int Conf Intell Robots Syst (IROS) 2017, 3611–3616 (2017)
Lecours, A., Mayer-st-onge, B., Gosselin, C.: Variable admittance control of a four-degree-of-freedom intelligent assist device, in. IEEE Int Conf Robotics Automation 2012, 3903–3908 (2012)
Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural circuits. PLoS Comput. Biol. 3(1), 0015–0034 (2007)
Magrini, E., Flacco, F., De Luca, A.: control of generalized contact motion and force in physical human-robot interaction. In: 2015 IEEE International Conference on Robotics and Automation (ICRA) Washington, 2015, pp. 2298–2304
Mandic, D.P., Chambers, J.A.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. John Wiley & Sons Inc, New York (2001)
Moniz, A.B., Krings, B.: Robots working with humans or humans working with robots ? Searching for social dimensions in new human-robot interaction in industry. Societies 6(3), 1–21 (2016)
Nath, S., Liu, V., Chan, A. , Li, X., White, A., and White, M.: Training recurrent neural networks online by learning explicit state variables, in International Conference on Learning Representations (ICLR 2020), 2020, pp. 1–21.
Newman, W.S., Zhang, Y.: Stable interaction control and coulomb friction compensation using natural admittance control. J. Robot. Syst. 1(1), 3–11 (1994)
Obradovic, D.: On-line training of recurrent neural networks with continuous topology adaptation. IEEE Trans. Neural Netw. 7(1), 222–228 (1996)
Okunev, V., Nierhoff, T., Hirche, S.: Human-preference-based control design : adaptive robot admittance control for physical human-robot interaction, in 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, 2012, pp. 443–448.
Rad, A. B., Bui, T. W., Li, V., Wong, Y. K.: A new on-line pid tuning method using neural networks, in IFAC Proc. Vol. IFAC Work. Digit. Control Past, Present Futur. PID Control, vol. 33, no. 4, pp. 443–448, 2000.
Sharkawy, A.-N.: Principle of Neural Network and Its Main Types: Review. J. Adv. Appl. Comput. Math. 7(1), 8–19 (2020)
Sharkawy, A.-N., Koustoumpardis, P. N., Aspragathos, N. : Variable Admittance Control for Human - Robot Collaboration based on Online Neural Network Training, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2018), 2018.
Sharkawy, A.-N., Koustoumpardis, P. N., Aspragathos, N.: A Neural Network based Approach for Variable Admittance Control in Human- Robot Cooperation : Online Adjustment of the Virtual Inertia, Intell. Serv. Robot., 2020.
Sharkawy, A.N., Papakonstantinou, C., Papakostopoulos, V., Moulianitis, V.C., Aspragathos, N.: Task location for high performance human-robot collaboration. J. Intell. Robot. Syst. Theory Appl. 100(1), 183–202 (2020)
Siegelmann, H.T., Sontag, E.D.: Turing computability with neural nets. Appl. Math. Lett. 4(6), 77–80 (1991)
Song, P., Yu, Y., Zhang, X.: “A Tutorial survey and comparison of impedance control on robotic manipulation,” Robotica, pp. 1–36, 2019.
Torkar, C., Yahyanejad, S., Pichler, H., Hofbaur, M., Rinner, B.: RNN-based human pose prediction for human-robot interaction. Proc ARW & OAGM Workshop 2019, 76–80 (2019)
Tsumugiwa, T., Yokogawa, R., Hara, K.: Variable impedance control with regard to working process for man-machine cooperation-work system, in Proceedings of the 2001 IEEE/RsI International Conference on Intelligent Robots and Systems, 2001, pp. 1564–1569.
Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1(2), 270–280 (1989)
Wu, Y., Song, Q., Yang, X.: Robust recurrent neural network control of biped robot. J. Intell. Robot. Syst. Theory Appl. 49(2), 151–169 (2007)
Wysocki, A., Ławrynczuk, M.: Jordan neural network for modelling and predictive control of dynamic systems, 2015 20th Int. Conf. Methods Model. Autom. Robot. 2(1), 145–150 (2015)
Yamada, T., Murata, S., Arie, H., Ogata, T.: Dynamical integration of language and behavior in a recurrent neural network for human—robot. Front. Neurorobot. 10, 1–17 (2016)