Xử lý ô nhiễm đất quy mô thực tế bằng phytoremediation

Biodegradation - Tập 24 - Trang 521-538 - 2012
Cristina Macci1, Serena Doni1, Eleonora Peruzzi1, Simone Bardella1, Giorgio Filippis1, Brunello Ceccanti1, Grazia Masciandaro1
1Istituto per lo Studio degli Ecosistemi (ISE), Consiglio Nazionale delle Ricerche (CNR), Pisa, Italy

Tóm tắt

Trong nghiên cứu này, một quy trình xử lý ô nhiễm bằng thực vật với sự kết hợp của các loài thực vật khác nhau (Populus nigra (var.italica), Paulownia tomentosa và Cytisus scoparius), cùng với các loại cây tự nhiên đã được đề xuất ở quy mô thực tế (10.000 m2) nhằm khôi phục và phục hồi chức năng cho một loại đất bị ô nhiễm nặng nề bởi kim loại nặng và hydrocacbon. Trong nỗ lực đánh giá cả hiệu quả và tiến trình của hệ thống phục hồi hướng tới một hệ sinh thái đất tự nhiên, bên cạnh các tham số ô nhiễm, cũng đã điều tra các tham số mô tả hiệu quả của các thành phần vi sinh vật (hoạt động enzyme). Trong 3 năm, tổng hàm lượng hydrocacbon và kim loại nặng trong đất giảm theo thời gian (40% và 20-40%, tương ứng), đạt nồng độ dưới giới hạn của luật pháp quốc gia và biến địa điểm trở nên thích hợp cho việc tái sử dụng môi trường. Việc giảm ô nhiễm có thể là nguyên nhân dẫn đến sự gia tăng trong hoạt động dehydrogenase (chỉ số hoạt động vi sinh vật tổng thể), β-glucosidase và phosphatase, các enzyme liên quan đến vòng tuần hoàn C và P, tương ứng. Tuy nhiên, xu hướng này rõ ràng cũng do sự gia tăng của các dưỡng chất hóa học, đóng vai trò như nền tảng cho các enzyme này. Hơn nữa, một thử nghiệm thực vật được thực hiện với Raphanus sativus cho thấy, sau 3 năm, một sự gia tăng đáng kể về tỷ lệ tăng trưởng của cây, xác nhận sự giảm độc tính của đất và sự cải thiện trong trạng thái dinh dưỡng của đất. Do đó, hệ thống xử lý ô nhiễm bằng thực vật này dường như rất hứa hẹn để thực hiện cả việc khử ô nhiễm và phục hồi chức năng của một loại đất ô nhiễm ở cấp độ quy mô thực tế.

Từ khóa

#phytoremediation #ô nhiễm đất #vi sinh vật #enzyme #phục hồi chức năng

Tài liệu tham khảo

Adam G, Duncan HJ (1999) Effect of diesel fuel on growth of selected plant species. Environ Geochem Health 21:353–357 Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207 Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead, and arsenic. Environ Sci Biotechnol 3:71–90 Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2636 APAT (2002) Guida tecnica su metodi di analisi per il suolo e i siti contaminati: utilizzo di indicatori ecotossicologici e biologici. RTI CTN_SSC 2/2002 Bastida F, Moreno JL, Hernandez T, Garcia C (2006) Microbiological degradation index of soils in a semiarid climate. Soil Biol Biochem 38:3463–3473 Bastida F, Moreno JL, Nicolás C, Hernández T, Garcia C (2009) Soil metaproteomics: a review of an emerging environmental science. Significance, methodology and perspectives. J Soil Sci 60:845–859 Bastida F, Nicolás C, Moreno JL, Hernández T, Garcia C (2010) Tracing Changes in the microbial community of a hydrocarbon-polluted soil by culture-dependent proteomics. Pedoshere 20:479–485 Baud-Grasset F, Baud-Grasset S, Safferman SI (1993) Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere 26:1365–1374 Benndorf D, Balcke GU, Harms H, Von Bergen M (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. The ISME J 1:224–234 Bentham H, Harris JA, Birch P, Short KC (1992) Habitat classification and soil restoration assessment using analysis of soil microbiological and physicochemical characteristics. Biol Fertil Soils 29:711–718 Brady NC, Weill RR (1996) The nature and properties of soils. Prentice Hall, Upper Saddle River Cao B, Nagarajan K, Loh KC (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228 Carroll S, Goonetilleke A, Dawes L (2004) Framework for soil suitability evaluation for sewage effluent renovation. Environ Geol 46:195–208 Ceccanti B, Garcia C, Masciandaro G, Macci C, Doni S (2006) Soil Bioremediation: combination of earthworms and compost for the ecological remediation of a hydrocarbon polluted soil. Water Air Soil Pollut 177:383–397 Chauhan A, Jain RK (2010) Biodegradation: gaining insight through proteomics. Biodegradation 21:861–879 Chourey K, Jansson J, VerBerkmoes N, Shah M, Chavarria KL, Tom LM, Brodie EL, Hettich RL (2010) Direct cellular lysis/protein extraction protocol for soil metaproteomics. J Proteome Res 9:6615–6622 Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18:82–90 Dick RP (1992) A review: long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric Ecosystems Environ 40:25–36 Dick R (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran J, Jones A (eds) Methods for assessing soil quality. Soil Science Society of America, Madison, pp 121–156 Dick WA, Tabatabai MA (1993) Significance and potential uses of soil enzymes. In: Blaine F (ed) Soil microbial ecology. Application in Agricultural and Environmental Management, Marcel Dekker, pp 95–127 Doni S, Macci C, Peruzzi E, Arenella M, Ceccanti B, Masciandaro G (2012) In situ phytoremediation of a historically contaminated soil by metals, hydrocarbons and polychlorobiphenyls. J Environ Monit 14:1383–1390 Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Del Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490 Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114 Eldor P (2007) Soil Microbiology, Ecology, and Biochemistry. In: Eldor P (ed) Tercera. Academic Press, Chennai, India EPA (2000) Introduction to Phytoremediation. EPA 600-R-99-107, Office of Research and Development. http://clu-in.org/download/remed/introphyto.pdf Ferro AM, Rock SA, Kennedy J, Herrick JJ, Turner DL (1999) Phytoremediation of soils contaminated with wood preservatives: greenhouse and field evaluations. Int J Phytorem 1:289–306 Fogarty G, Facelli JM (1999) Growth and competition of Cytisus scoparius, an invasive shrub, and Australian native shrubs. Plant Ecol 144:27–35 Frick CM, Farrell RE, Germida JJ (1999) Assessment of phytoremediation as an in-situ technique for cleaning oil-contaminated sites. PTAC Petroleum Technology Alliance Canada Calgary, Alberta Fuentes M, Govaerts B, De Leon F, Hidalgo C, Dendooven L, Sayre KD, Etchevers J (2009) Fourteen years of applying zero and conventional tillage, crop rotation and residue management systems and its effect on physical and chemical soil quality. Eur J Agron 30:228–237 Garcia C, Hernandez T, Costa F, Ceccanti C, Gianni A (1993) Hydrolases in the organic matter fractions of sewage sludge: changes with compostine. Bioresour Technol 45:47–52 Garcia G, Zanuzzi AL, Faz A (2005) Evaluation of heavy metal availability prior to an in situ soil phytoremediation program. Biodegradation 16:187–194 Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30 Gianfreda L, Rao MA, Piotrowska A, Palumbo G, Colombo C (2005) Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution. Sci Total Environ 34:265–279 Gudin C, Syratt WJ (1975) Biological aspects of land rehabilitation following hydrocarbon contamination. Environ Pollut 8:107–112 Gurska J, Wang WX, Gerhardt KE, Khalid AM, Isherwood DM, Huang XD, Glick BR, Greenberg BM (2009) Three year field test of a plant growth promoting rhizobacteria enhanced phytoremediation system at a land farm for treatment of hydrocarbon waste. Environ Sci Technol 43:4472–4479 Henner P, Schiavon M, Druelle V, Lichtfous E (1999) Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Org Geochem 30:963–969 Hu ZY, Zhu YG, Li M, Zhang LG, Cao ZH, Smith FA (2007) Sulfur (S)-induced enhancement of iron plaque formation in the rhizosphere reduces arsenic accumulation in rice (Oryza sativa L.) seedlings. Environ Pollut 147:387–393 HUJI (2006) The Protein Purification Facility, Protein Precipitation Protocols.The Wolfson Centre for Applied Structural Biology, the Hebrew University ofJerusalem. Available from: http://wolfson.huji.ac.il Hutchinson SL, Schwab AP, Banks MK (2003) Biodegradation of petroleum hydrocarbons in the rhizosphere. In: McCutcheon S, Schnoor J (eds) Phytoremediation: transformation and control of contaminants. John Wiley & Sons, Inc., Hoboken, pp 355–386 Iannelli R, Bianchi V, Macci C, Peruzzi E, Chiellini C, Petroni G, Masciandaro G (2012) Assessment of pollution impact on biological activity and structure of seabed bacterial communities in the Port of Livorno (Italy). Sci Total Environ 426:56–64 Indorante SJ, Follmer LR, Hammer RD, Koenig PG (1990) Particle-size analysis by a modified pipette procedure. Soil Sci Soc Am J 54:560–563 Jalali M, Khanlari ZV (2008) Effect of aging process on the fractionation of heavy metals in some calcareous soils of Iran. Geoderma 143:26–40 Joner EJ, Leyval C (2001) Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10:155–159 Kaasalainen M, Yli-Halla M (2003) Use of sequential extraction to assess metal partitioning in soils. Environ Pollut 126:225–233 Kacalkova L, Tlusto P (2011) The uptake of persistent organic pollutants by plants. Cent Eur J Biol 6:223–235 Keith LH, Telliard WA (1979) Priority pollutants is a perspective view. Environ Sci Technol 13:416–423 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 Liu YJ, Zhu YG, Ding H (2007) Lead and cadmium in leaves of deciduous trees in Beijing, China: development of a metal accumulation index (MAI). Environ Pollut 145:387–390 Lu A, Zhang S, Shan XQ (2005) Time effect on the fractionation of heavy metals in soils. Geoderma 125:225–234 Luo CL, Shen ZG, Li XD (2008) Root exudates increase metal accumulation in mixed cultures: implications for naturally enhanced phytoextraction. Water Air Soil Pollut 193:147–154 Macci C, Doni S, Peruzzi E, Masciandaro G, Mennone C, Ceccanti B (2012) Almond tree and organic fertilization for soil quality improvement in southern Italy. J Environ Manage 95:215–222 Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34 Manns HR, Maxwell CD, Emery RJN (2007) The effect of ground cover or initial organic carbon on soil fungi, aggregation, moisture and organic carbon in one season with oat (Avena sativa) plots. Soil Tillage Res 96:83–94 Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346 Masciandaro G, Ceccanti B, Ronchi V, Bauer C (2000) Kinetic parameter of dehydrogenase in the assessment of the response of soil to vermicompost and inorganic fertilisers. Biol Fertil Soils 32:479–483 Masciandaro G, Fantoni E, Macci C, Doni S, Peruzzi E, Ceccanti B (2009) A preliminar ecological approach in the design and operation of a full-scale bioremediation system. Bull Sci Inf 17:59–65 Matsunaga A, Yashuhara A (2003) Complete dechlorination of 1-chloronaphthalene by electrochemical reduction with naphthalene radical anion as mediator. Environ Sci Technol 37:3435–3441 Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162 Mocko A, Waclawek W (2004) Three-step extraction procedure for determination of heavy metals availability to vegetables. Anal Bioanal Chem 380:813–817 Moreno B, Nogales R, Macci C, Masciandaro G, Benitez E (2011) Microbial eco-physiological profiles to estimate the effectiveness of rhizoremediation of trichloroethylene-contaminated soils. Ecol Indic 11:1563–1571 Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36 Nannipieri P (2006) Role of stabilised enzymes in microbial ecology and enzyme extraction from soil with potential applications in soil proteomics. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer-Verlag, Heidelberg, pp 75–94 Nannipieri P, Ceccanti B, Cervelli S, Matarese E (1980) Extraction of phosphatase, urease, proteases, organic carbon and nitrogen from soil. Soil Sci Soc Am J 44:1011–1016 Nannipieri P, Ceccanti B, Grego S (1990) Ecological significance of biological activity in soil. In: Bollag JM, Stotzky G (eds) Soil biochemistry. Marcel Dekker, New York, pp 293–355 Nedunuri KV, Govindaraju RS, Banks MK, Schwab AP, Chen Z (2000) Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J Environ Eng 126:483–490 Newman EI (1985) The rhizosphere: carbon sources and microbial populations. In: Fitter AH, Atkinson D, Read DJ, Usher MB (eds) Ecological interactions in soil: plants. Blackwell Scientific Publications, Oxford, UK, Microbes and Animals, pp 107–121 Nielsen M, Winding A (2002) Microorganisms as indicators of soil health. National Environmental Research Institute, Denmark Nowack B, Schulin R, Luster J (2010) Metal fractionation in a contaminated soil after reforestation: temporal changes versus spatial variability. Environ Pollut 158:3272–3278 Palmroth MRT, Koskinen PEP, Kaksonen AH, Munster U, Pichtel J, Puhakka JA (2007) Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals. Biodegradation 18:769–782 Perrin-Ganier C, Schiavon F, Morel JL, Schiavon M (2001) Effect of sludge-amendment or nutrition addition on the biodegradation of the herbicide isoproturon in soil. Chemosphere 44:887–892 Pule BO, Mmualefe LC (2012). Analysis of Polycyclic Aromatic Hydrocarbons in Soil with Agilent Bond Elut QuEChERS AOAC Kit and HPLC-FLD. Publication Part Number 5990-5452EN http://www.chem.agilent.com (accessed 13 Apr 2012) Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees. Environ Int 29:529–540 Reilley KA, Banks MK, Schwab AP (1996) Organic chemicals in the environment: dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25:212–219 Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–474 Schneider T, Riedel K (2010) Environmental proteomics: analysis of structure and function of microbial communities. Proteomics 10:785–798 Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol 80:265–280 Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658 Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197 Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383 Van Epps A (2006) Phytoremediation of petroleum hydrocarbons. Environmental Protection Agency, U.S Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794 Villar P, Callejon M, Alonso E, Jimenez J, Guiraúm A (2004) Optimization and validation of a new method of analysis for polycyclic aromatic hydrocarbons in sewage sludge by liquid chromatography after microwave assisted extraction. Anal Chim Acta 524:295–304 Violante P (2000) Metodi di analisi chimica del suolo. Franco Angeli Editore Milan, Italy Wetzel SC, Banks MK, Schwab AP (1997) Rhizosphere effects on the degradation of pyrene and anthracene in soil. In: Kruger EL,. Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS Symposium 664. American Chemical Society, Washington, DC, pp 254–262 Wilmes P, Bond PL (2004) The application of two dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6:911–920 Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249 Yang H, Cho Y, Eum H, Kim E (2007) Destruction of chlorinated organic solvents in a two stage molten salt oxidation reactor system. Chem Eng Sci 68:5137–5143 Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plan 19:1467–1476 Zapusek U, Lestan D (2009) Fractionation, mobility and bio-accessibility of Cu, Zn, Cd, Pb and Ni in aged artificial soil mixtures. Geoderma 154:164–169 Zhou QX, Song YF (2004) Principles and methods of contaminated soil remediation. Science Press, Beijing