A reaction-and-assembly approach using monoamine zinc porphyrin for highly stable large-area perovskite solar cells

Science in China Series B: Chemistry - Tập 63 - Trang 777-784 - 2020
Xiaochen Li1, Chunling Li1, Yiying Wu2, Jing Cao1, Yu Tang1
1State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
2Department of Chemistry and Biochemistry, The Ohio State University, Columbus, USA

Tóm tắt

Inhibiting the irreversible escape of organic cations and iodide species in perovskite films is crucial for the fabrication of efficient and stable perovskite solar cells (PSCs). Here, we develop a reaction-and-assembly approach using monoamine zinc porphyrin (ZnP) to modify methylammonium (MA+) lead iodide perovskite film. The amine group in ZnP reacts with MA+ and I− ions to yield monoammonium zinc porphyrin (ZnP-H+I−). The resultant films show no escape of iodide when immersed in ether solutions. Measurements from space-charge limited currents and transient photoluminescence indicate the modified films have reduced density of defects. These results suggest the formed ZnP-H+I− is bound on the surface and grain boundary of perovskite film to retard migrations of ions. DFT calculations also show that the energy alignment between ZnP-H+ and perovskite facilitates the electron transfer and reduces charge recombination at the perovskite grains. Furthermore, post-treating the ZnP-doped film with ZnP again results in the formation of a one dimension zig-zag coordination polymer on the surface of the perovskite film. The single crystal structure of ZnP shows the polymer layer is formed through the coordination interaction between the Zn(II) metal center and a neighboring monoamine. The polymer facilitates the interfacial charge transfer, and reduces the escape of organic cations and iodide species in perovskite films, thereby keeping the excellent cell performance (20.0%) and further realizing the ion encapsulation. Finally, the modified PSCs retain over 90% of its original efficiency over 2,000 h at 85 °C or AM 1.5 G continuous illumination, or over 6,000 h in 45% humidity without encapsulation. This work affords a new strategy to achieve the efficient ions immobilization and encapsulation by in situ reaction and coordination assembly of mono-amine zinc porphyrin.

Tài liệu tham khảo

Wang L, Zhou H, Hu J, Huang B, Sun M, Dong B, Zheng G, Huang Y, Chen Y, Li L, Xu Z, Li N, Liu Z, Chen Q, Sun LD, Yan CH. Science, 2019, 1: 265–270 Li N, Tao S, Chen Y, Niu X, Onwudinanti CK, Hu C, Qiu Z, Xu Z, Zheng G, Wang L, Zhang Y, Li L, Liu H, Lun Y, Hong J, Wang X, Liu Y, Xie H, Gao Y, Bai Y, Yang S, Brocks G, Chen Q, Zhou H. Nat Energy, 2019, 1: 408–415 Zhang M, Dai S, Chandrabose S, Chen K, Liu K, Qin M, Lu X, Hodgkiss JM, Zhou H, Zhan X. J Am Chem Soc, 2018, 1: 14938–14944 Turren-Cruz SH, Hagfeldt A, Saliba M. Science, 2018, 1: 449–453 Saliba M. Science, 2018, 1: 388–389 Meng L, Sun C, Wang R, Huang W, Zhao Z, Sun P, Huang T, Xue J, Lee JW, Zhu C, Huang Y, Li Y, Yang Y. J Am Chem Soc, 2018, 1: 17255–17262 Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade GF, Watts JF, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend RH, Gong Q, Snaith HJ, Zhu R. Science, 2018, 1: 1442–1446 Lin J, Lai M, Dou L, Kley CS, Chen H, Peng F, Sun J, Lu D, Hawks SA, Xie C, Cui F, Alivisatos AP, Limmer DT, Yang P. Nat Mater, 2018, 1: 261–267 Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J. Nat Photon, 2019, https://doi.org/10.1038/s41566-41019-40398-41562 Jung EH, Jeon NJ, Park EY, Moon CS, Shin TJ, Yang TY, Noh JH, Seo J. Nature, 2019, 1: 511–515 Domanski K, Alharbi EA, Hagfeldt A, Grätzel M, Tress W. Nat Energy, 2018, 1: 61–67 Ran C, Xu J, Gao W, Huang C, Dou S. Chem Soc Rev, 2018, 1: 4581–4610 Wang X, Ling Y, Lian X, Xin Y, Dhungana KB, Perez-Orive F, Knox J, Chen Z, Zhou Y, Beery D, Hanson K, Shi J, Lin S, Gao H. Nat Commun, 2019, 10: 695 Guo Y, Sato W, Shoyama K, Halim H, Itabashi Y, Shang R, Nakamura E. Am Chem Soc, 2017, 1: 9598–9604 Liu Z, Hu J, Jiao H, Li L, Zheng G, Chen Y, Huang Y, Zhang Q, Shen C, Chen Q, Zhou H. Adv Mater, 2017, 1: 1606774–1606781 Tan H, Jain A, Voznyy O, Lan X, Garcia de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 1: 722–726 Wu Y, Xie F, Chen H, Yang X, Su H, Cai M, Zhou Z, Noda T, Han L. Adv Mater, 2017, 1: 1701073–1701080 Cao J, Jing X, Yan J, Hu C, Chen R, Yin J, Li J, Zheng N. J Am Chem Soc, 2016, 1: 9919–9926 Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J. Energy Environ Sci, 2016, 1: 1752–1759 Zheng X, Deng Y, Chen B, Wei H, Xiao X, Fang Y, Lin Y, Yu Z, Liu Y, Wang Q, Huang J. Adv Mater, 2018, 30: 1803428 Chen Y, Li N, Wang L, Li L, Xu Z, Jiao H, Liu P, Zhu C, Zai H, Sun M, Zou W, Zhang S, Xing G, Liu X, Wang J, Li D, Huang B, Chen Q, Zhou H. Nat Commun, 2019, 10: 1112 Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu SF. Adv Mater, 2018, 1: 1706576–1706586 Meggiolaro D, Motti SG, Mosconi E, Barker AJ, Ball J, Andrea Riccardo Perini C, Deschler F, Petrozza A, De Angelis F. Energy Environ Sci, 2018, 1: 702–713 Nie R, Mehta A, Park BW, Kwon HW, Im J, Seok SI. J Am Chem Soc, 2018, 1: 872–875 Yang S, Dai J, Yu Z, Shao Y, Zhou Y, Xiao X, Zeng XC, Huang J. J Am Chem Soc, 2019, 1: 5781–5787 Li C, Yin J, Chen R, Lv X, Feng X, Wu Y, Cao J. J Am Chem Soc, 2019, 1: 6345–6351 Ke W, Spanopoulos I, Tu Q, Hadar I, Li X, Shekhawat GS, Dravid VP, Kanatzidis MG. J Am Chem Soc, 2019, 1: 8627–8637 Cao J, Wu B, Peng J, Feng X, Li C, Tang Y. Sci China Chem, 2019, 1: 363–369 Wu WQ, Wang Q, Fang Y, Shao Y, Tang S, Deng Y, Lu H, Liu Y, Li T, Yang Z, Gruverman A, Huang J. Nat Commun, 2018, 9: 1625 Lu J, Lin X, Jiao X, Gengenbach T, Scully AD, Jiang L, Tan B, Sun J, Li B, Pai N, Bach U, Simonov AN, Cheng YB. Energy Environ Sci, 2018, 1: 1880–1889 Cao J, Li C, Lv X, Feng X, Meng R, Wu Y, Tang Y. J Am Chem Soc, 2018, 1: 11577–11580 Zheng X, Chen B, Dai J, Fang Y, Bai Y, Lin Y, Wei H, Zeng XC, Huang J. Nat Energy, 2017, 1: 17102–17110 Saidaminov MI, Kim J, Jain A, Quintero-Bermudez R, Tan H, Long G, Tan F, Johnston A, Zhao Y, Voznyy O, Sargent EH. Nat Energy, 2018, 1: 648–654 Wu WQ, Yang Z, Rudd PN, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J. Sci Adv, 2019, 5: eaav8925 Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J. Nat Energy, 2018, 1: 560–566 Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Grätzel M, Park NG. Sci Rep, 2012, 2: 591 Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG. J Am Chem Soc, 2015, 1: 8696–8699 Cao J, Lv X, Zhang P, Chuong TT, Wu B, Feng X, Shan C, Liu J, Tang Y. Adv Mater, 2018, 1: 1800568–1800576 Varadwaj GBB, Rana S, Parida KM. Dalton Trans, 2013, 1: 5122–5129 Bala Murali Krishna M, Venkatramaiah N, Venkatesan R, Narayana Rao D. J Mater Chem, 2012, 1: 3059–3068 Zai H, Zhu C, Xie H, Zhao Y, Shi C, Chen Z, Ke X, Sui M, Chen C, Hu J, Zhang Q, Gao Y, Zhou H, Li Y, Chen Q. ACS Energy Lett, 2017, 1: 30–38