A rank inequality for finite geometric lattices

Journal of Combinatorial Theory - Tập 9 Số 4 - Trang 357-364 - 1970
Curtis Greene1
1California Institute of Technology, Department of Mathematics, Pasadena, Calif. 91109, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Birkhoff, 1967

Dilworth, 1954, Proof of a Conjecture on Finite Modular Lattices, Ann. of Math., 60, 359, 10.2307/1969639

de Bruijn, 1948, On a Combinatorial Problem, Indigationes Math., 10, 421

Harper, 1967, Stirling Behavior Is Asymptotically Normal, Ann. Math. Statist., 38, 410, 10.1214/aoms/1177698956

L. H. Harper, The Morphology of Geometric Lattices (to appear).

Motzkin, 1951, The Lines and Planes Connecting the Points of a Finite Set, Trans. Amer. Math. Soc., 70, 451, 10.1090/S0002-9947-1951-0041447-9

Ryser, 1968, An Extension of a Theorem of de Bruijn and Erdös on Combinatorial Designs, J. Algebra, 10, 246, 10.1016/0021-8693(68)90099-9