A random walk on spheres based kinetic Monte Carlo method for simulation of the fluctuation-limited bimolecular reactions
Tài liệu tham khảo
Bramson, 1991, Asymptotic behavior of densities for two-particle annihilating random walks, J. Stat. Phys., 62, 297, 10.1007/BF01020872
Brandt, 2006, Solid State Lighting: The benefits of disorder, Nature Mater., 5, 769, 10.1038/nmat1728
Caro, 2013, Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides, Phys. Rev. B, 88, 10.1103/PhysRevB.88.214103
Donev, 2010, A first-passage kinetic Monte Carlo algorithm for complex diffusion-reaction systems, J. Comput. Phys., 229, 3214, 10.1016/j.jcp.2009.12.038
Donev, 2005, Neighbor list collision-driven molecular dynamics simulation for nonspherical particles: I. Algorithmic details II. Applications to ellipses and ellipsoids, J. Comput. Phys., 202, 765
Eibeck, 2001, Stochastic particle approximation for Smoluchowski’s coagulation equation, Ann. Appl. Probab., 11, 1137, 10.1214/aoap/1015345398
Garcia, 1987, A Monte Carlo simualtion of coagulation, Physica A, 143, 535, 10.1016/0378-4371(87)90164-6
Golyandina, 2004, Convergence rate for spherical processes with shifted centres, Monte Carlo Methods Appl., 10, 287
Hammersley, 2012, The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures, J. Appl. Phys., 111, 10.1063/1.3703062
Kanevsky, 1977, On simulation of the exit point for a brownian motion in a ball, Russ. J. Appl. Math. Phys., 17, 763
Kireeva, 2015, Cellular automata model of electrons and holes annihilation in an inhomogeneous semiconductor, Lecture Notes in Comput. Sci., 9251, 191, 10.1007/978-3-319-21909-7_18
Kolodko, 2001, Stochastic Lagrangian model for spatially inhomogeneous Smoluchowski equation governing coagulating and diffusing particles, Monte Carlo Methods Appl., 7, 223
Kolodko, 1999, A stochastic method for solving Smoluchowski’s coagulation equation, Math. Comput. Simulation, 49, 57, 10.1016/S0378-4754(99)00008-7
Kotomin, 1996, Modern aspects of diffusion-controlled reactions, vol. 34
Lushnikov, 1976, Evolution of coagulating systems: III. Coagulating mixtures, J. Colloid Interface Sci., 54, 94, 10.1016/0021-9797(76)90288-5
Morgan, 2007, Modelling nanoparticle dynamics: coagulation, sintering, particle inception and surface growth, Combust. Theory Model., 9, 449, 10.1080/13647830500277183
Opplestrup, 2006, First-passage Monte Carlo algorithm: diffusion without all the hops, Phys. Rev. Lett., 97, 10.1103/PhysRevLett.97.230602
Ovchinnikov, 1978, Role of density fluctuations in bimolecular reaction kinetics, Chem. Phys., 28, 215, 10.1016/0301-0104(78)85052-6
Redner, 2001
Sabelfeld, 1991
Sabelfeld, 1997, Stochastic algorithms for solving Smolouchovsky coagulation equation, 80
Sabelfeld, 2015, Stochastic model for the fluctuation-limited reaction–diffusion kinetics in inhomogeneous media based on the nonlinear Smoluchowski equations, J. Math. Chem., 53, 651, 10.1007/s10910-014-0446-6
Sabelfeld, 2003, Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation, Math. Comput. Simulation, 61, 115, 10.1016/S0378-4754(02)00141-6
Sabelfeld, 2015, Stochastic simulation of fluctuation-induced reaction–diffusion kinetics governed by Smoluchowski equations, Monte Carlo Methods Appl., 21, 33, 10.1515/mcma-2014-0012
Sabelfeld, 2009, Sparsified Randomization Algorithms for large systems of linear equations and a new version of the Random Walk on Boundary method, Monte Carlo Methods Appl., 15, 257, 10.1515/MCMA.2009.015
Sabelfeld, 1996, Stochastic algorithms for solving Smolouchovsky coagulation equation and applications to aerosol growth simulation, Monte Carlo Methods Appl., 2, 41, 10.1515/mcma.1996.2.1.41
Seki, 2006, Dispersive-diffusion-controlled distance-dependent recombination in amorphous semiconductors, J. Chem. Phys., 124, 10.1063/1.2161213
Smoluchowski, 1916, Drei Vorträge uber Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Z., 17, 557
Steisunas, 2009, On the sojourn time of the Brownian process in a multidimensional sphere, Nonlinear Anal. Model. Control, 14, 389, 10.15388/NA.2009.14.3.14502