Hoạt động dao động quasi-27 ngày từ tầng đối lưu đến tầng giữa và tầng nhiệt ở vĩ độ thấp

H. Cheng1, Kai Huang1, Alan Liu2, Zhang Shaodong1, Chunming Huang1, Yun Gong3
1School of Electronic Information, Wuhan University, Wuhan 430072, China
2Department of Physical Science, Embry-Riddle Aeronautical University, Daytona Beach, FL, USA
3Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China

Tóm tắt

Tóm tắtSử dụng radar khí tượng, quan sát radiosonde và dữ liệu tái phân tích MERRA-2 từ 12 tháng 8 đến 31 tháng 10 năm 2006, chúng tôi báo cáo về sự kết hợp động lực từ bầu khí quyển thấp nhiệt đới đến tầng giữa và tầng nhiệt dưới thông qua một dao động giữa mùa quasi-27 ngày (ISO). Thật thú vị là ISO quasi-27 ngày được quan sát thấy trong các khu vực tầng đối lưu, tầng phân bố và tầng giữa, thể hiện một cấu trúc ba lớp. Trong tầng giữa và tầng nhiệt dưới, biên độ của gió theo phương zonal tăng từ khoảng 4 ms−1 ở độ cao 90 km lên 15 ms−1 ở độ cao 100 km, điều này khác với các quan sát trước đây cho rằng ISOs xảy ra chủ yếu vào mùa đông với một đỉnh biên độ ở khoảng 80–90 km, sau đó nhanh chóng suy yếu khi chiều cao tăng lên. Bức xạ sóng dài (OLR) và độ ẩm đặc trưng cho thấy có một chu kỳ quasi-27 ngày trong hoạt động đối lưu ở vùng khí nhiệt đới, điều này gây ra ISO của gió zonal và hoạt động sóng trọng lực (GW) trong tầng đối lưu. Các GW đi lên được điều chế thêm bởi dao động trong tầng đối lưu và tầng phân bố trên. Khi các GW lan truyền lên tầng giữa và tầng nhiệt dưới, dao động quasi-27 ngày trong trường gió được sinh ra với một pha rõ ràng ngược lại với pha trong bầu khí quyển thấp thông qua sự không ổn định và tiêu tán của các GW được điều chế này. Phân tích wavelet cho thấy sự biến thiên quasi-27 ngày trong tầng giữa và tầng nhiệt dưới xuất hiện như một sự kiện cụ thể hơn là một hiện tượng kéo dài, và không có một mối quan hệ tương ứng rõ ràng với tác động của quay mặt trời trong vòng 1 năm quan sát.

Từ khóa


Tài liệu tham khảo

Alduchov OA, Eskridge RE (1996) Improved magnus form approximation of saturation vapor pressure. J Appl Meteor 35:601–609.

Allen SJ, Vincent RA (1995) Gravity wave activity in the lower atmosphere: seasonal and latitudinal variations. J Geophys Res Atmos 100:1327–1350. https://doi.org/10.1029/94JD02688

Arkin PA, Ardanuy PE (1989) Estimating climatic-scale precipitation from space: a review. J Clim 2:1229–1238. https://doi.org/10.1175/1520-0442(1989)002%3c1229:ECSPFS%3e2.0.CO;2

Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ et al (2001) The quasi-biennial oscillation. Rev Geophys 39(2):179–229. https://doi.org/10.1029/1999RG000073

Barnes HC, Houze RA Jr (2013) The precipitating cloud population of the Madden–Julian oscillation over the Indian and west Pacific Oceans. J Geophys Res Atmos 118:6996–7023. https://doi.org/10.1002/jgrd.50375

Coley WR, Heelis RA (2012) Response of the equatorial topside ionosphere to 27-day variations in solar EUV input during a low solar activity period using C/NOFS. J Geophys Res Space Phys 117:A03330. https://doi.org/10.1029/2011JA017301

Dunkerton TJ (1997) The role of gravity waves in the quasi-biennial oscillation. J Geophys Res Atmos 102:26053–26076. https://doi.org/10.1029/96JD02999

Eckermann SD, Vincent RA (1994) First observations of intraseasonal oscillations in the equatorial mesosphere and lower thermosphere. Geophys Res Lett 21:265–268. https://doi.org/10.1029/93GL02835

Eckermann SD, Rajopadhyaya DK, Vincent RA (1997) Intraseasonal wind variability in the equatorial mesosphere and lower thermosphere: long-term observations from the central Pacific. J Atmos and Sol Terr Phys 59:603–627. https://doi.org/10.1016/S1364-6826(96)00143-5

Fioletov VE (2009) Estimating the 27-day and 11-year solar cycle variations in tropical upper stratospheric ozone. J Geophys Res Atmos 114:D02302. https://doi.org/10.1029/2008JD010499

Franke SJ, Chu X, Liu AZ, Hocking WK (2005) Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause region above Maui Hawaii. J Geophys Res Atmos 110:D09S02. https://doi.org/10.1029/2003JD004486

Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003. https://doi.org/10.1029/2001RG000106

Gelaro R, McCarty W, Suárez MJ, Todling R, Molod A, Takacs L et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30:5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

Guharay A, Batista PP, Clemesha BR, Sarkhel S, Buriti RA (2014) Investigation of the intraseasonal oscillations over a Brazilian equatorial station: a case study. Earth Planets Space 66:145. https://doi.org/10.1186/s40623-014-0145-3

Guharay A, Batista PP, Buriti RA, Schuch NJ (2017) Signature of the quasi-27-day oscillation in the MLT and its relation with solar irradiance and convection. J Atmos and Sol Terr Phys 161:1–7. https://doi.org/10.1016/j.jastp.2017.06.001

Hocking WK, Fuller B, Vandepeer B (2001) Real-time determination of meteor-related parameters utilizing modern digital technology. J Atmos Sol Terr Phys 63:155–169. https://doi.org/10.1016/S1364-6826(00)00138-3

Hoffmann CG, von Savigny C (2019) Indications for a potential synchronization between the phase evolution of the Madden–Julian oscillation and the solar 27-day cycle. Atmos Chem Phys 19:4235–4256. https://doi.org/10.5194/acp-19-4235-2019

Hood LL (2016) Lagged response of tropical tropospheric temperature to solar ultraviolet variations on intraseasonal time scales. Geophys Res Lett 43(8):4066–4075. https://doi.org/10.1002/2016GL068855

Huang KM, Liu AZ, Lu X, Li Z, Gan Q, Gong Y et al (2013a) Nonlinear coupling between quasi 2 day wave and tides based on meteor radar observations at Maui. J Geophys Res Atmos 118:10936–10943. https://doi.org/10.1002/jgrd.50872

Huang KM, Liu AZ, Zhang SD, Yi F, Huang CM, Gan Q et al (2013b) A nonlinear interaction event between a 16-day wave and a diurnal tide from meteor radar observations. Ann Geophys 31:2039–2048. https://doi.org/10.5194/angeo-31-2039-2013

Huang KM, Liu AZ, Zhang SD, Yi F, Huang CM, Gan Q et al (2015) Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20° N. Ann Geophys 33:1321–1330. https://doi.org/10.5194/angeo-33-1321-2015

Huang KM, Yang ZX, Wang R, Zhang SD, Huang CM, Yi F, Hu F (2018) A statistical study of inertia gravity waves in the lower stratosphere over the Arctic region based on radiosonde observations. J Geophys Res Atmos 123:4958–4976. https://doi.org/10.1029/2017JD027998

Huang KM, Xi Y, Wang R, Zhang SD, Huang CM, Gong Y et al (2019) Signature of a quasi 30-day oscillation at midlatitude based on wind observations from MST radar and meteor radar. J Geophys Res Atmos 124:11266–11280. https://doi.org/10.1029/2019JD031170

Isoda F, Tsuda T, Nakamura T, Vincent RA, Reid IM, Achmad E et al (2004) Intraseasonal oscillations of the zonal wind near the mesopause observed with medium-frequency and meteor radars in the tropics. J Geophys Res Atmos 109:D21108. https://doi.org/10.1029/2003JD003378

Karmakar N, Krishnamurti TN (2019) Characteristics of northward propagating intraseasonal oscillation in the Indian summer monsoon. Clim Dyn 52:1903–1916. https://doi.org/10.1007/s00382-018-4268-2

Kumar K, Jain AR (1994) Latitudinal variations of 30–70 day period waves over the tropical Indian zone. J Atmos Terr Phys 56:1135–1145. https://doi.org/10.1016/0021-9169(94)90052-3

Kumar KK, Antonita TM, Ramkumar G, Deepa V, Gurubaran S, Rajaram R (2007) On the tropospheric origin of mesosphere lower thermosphere region intraseasonal wind variability. J Geophys Res Atmos 112:D07109. https://doi.org/10.1029/2006JD007962

Lau K-M, Peng L (1990) Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: monsoon dynamics. J Atmos Sci 47:1443–1462. https://doi.org/10.1175/1520-0469(1990)047%3c1443:OOLFOI%3e2.0.CO;2

Li Z, Li Y, Bonsal B, Manson AH, Scaff L (2018) Combined impacts of ENSO and MJO on the 2015 growing season drought on the Canadian Prairies. Hydrol Earth Syst Sci 22:5057–5067. https://doi.org/10.5194/hess-22-5057-2018

Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res Oceans 86:9707–9714. https://doi.org/10.1029/JC086iC10p09707

Liu AZ, Lu X, Franke SJ (2013) Diurnal variation of gravity wave momentum flux and its forcing on the diurnal tide. J Geophys Res Atmos 118:1668–1678. https://doi.org/10.1029/2012JD018653

Luo Y, Manson AH, Meek CE, Igarashi K, Jacobi C (2001) Extra long period (20–40 day) oscillations in the mesospheric and lower thermospheric winds: observations in Canada, Europe and Japan, and considerations of possible solar influences. J Atmos SolTerr Phys 63:835–852. https://doi.org/10.1016/S1364-6826(00)00206-6

Madden RA (1986) Seasonal variations of the 40–50 day oscillation in the tropics. J Atmos Sci 43:3138–3158. https://doi.org/10.1175/1520-0469(1986)043%3c3138:SVOTDO%3e2.0.CO;2

Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708. https://doi.org/10.1175/1520-0469(1971)028%3c0702:DOADOI%3e2.0.CO;2

Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Wea Rev 122:814–837. https://doi.org/10.1175/1520-0493(1994)122%3c0814:OOTDTO%3e2.0.CO;2

Moss AC, Wright CJ, Mitchell NJ (2016) Does the Madden–Julian oscillation modulate stratospheric gravity waves? Geophys Res Lett 43:3973–3981. https://doi.org/10.1002/2016GL068498

Nagpal OP, Dhaka SK, Srivastav SK (1994) Wave characteristics in the troposphere and stratosphere over the Indian tropics during the DYANA period. J Atmos Terr Phys 56:1117–1133. https://doi.org/10.1016/0021-9169(94)90051-5

Niranjankumar K, Ramkumar TK, Krishnaiah M (2011) Vertical and lateral propagation characteristics of intraseasonal oscillation from the tropical lower troposphere to upper mesosphere. J Geophys Res Atmos 116:D21112. https://doi.org/10.1029/2010JD015283

Ogino S-Y, Yamanaka MD, Shibagaki Y, Shimomai Y, Fukao S (1998) Horizontal variations of gravity wave activities in the lower stratosphere over Japan: a case study in the Baiu season 1991. Earth Planets Space 51:107–113. https://doi.org/10.1186/BF03352215

Pancheva D, Schminder R, Laštovička J (1991) 27-day fluctuations in the ionospheric D-region. J Atmos Terr Phys 53:1145–1150. https://doi.org/10.1016/0021-9169(91)90064-E

Pancheva D, Mitchell NJ, Younger PT, Muller HG (2003) Intra-seasonal oscillations observed in the MLT region above UK (52°N, 2°W) and ESRANGE (68°N, 21°E). Geophys Res Lett 30:2084. https://doi.org/10.1029/2003GL017809

Rao RK, Gurubaran S, Sathishkumar S, Sridharan S, Nakamura T, Tsuda T et al (2009) Longitudinal variability in intraseasonal oscillation in the tropical mesosphere and lower thermosphere region. J Geophys Res Atmos 114:D19110. https://doi.org/10.1029/2009JD011811

Ratnam MV, Alexander SP, Kozu T, Tsuda T (2009) Characteristics of gravity waves observed with intensive radiosonde campaign during November–December 2005 over western Sumatera. Earth Planets Space 61:983–993. https://doi.org/10.1186/BF03352948

Reed RJ, Campbell WJ, Rasmussen LA, Rogers DG (1961) Evidence of a downward-propagating, annual wind reversal in the equatorial stratosphere. J Geophys Res 66:813–818. https://doi.org/10.1029/JZ066i003p00813

Rich FJ, Sultan PJ, Burke WJ (2003) The 27-day variations of plasma densities and temperatures in the topside ionosphere. J Geophys Res Space Physics 108:1297. https://doi.org/10.1029/2002JA009731

Salby ML, Garcia RR, Hendon HH (1994) Planetary-scale circulations in the presence of climatological and wave-induced heating. J Atmos Sci 51:2344–2367. https://doi.org/10.1175/1520-0469(1994)051%3c2344:PSCITP%3e2.0.CO;2

Sato K, Nomoto M (2015) Gravity wave-induced anomalous potential vorticity gradient generating planetary waves in the winter mesosphere. J Atmos Sci 72(9):3609–3624. https://doi.org/10.1175/JAS-D-15-0046.1

Sato K, Watanabe S, Kawatani Y, Tomikawa Y, Miyazaki K, Takahashi M (2009) On the origins of mesospheric gravity waves. Geophys Res Lett 36:L19801. https://doi.org/10.1029/2009GL039908

Scargle JD (1982) Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J 263:835–853

Schanz A, Hocke K, Kämpfer N (2016) On forced and free atmospheric oscillations near the 27-day periodicity. Earth Planets Space 68:97. https://doi.org/10.1186/s40623-016-0460-y

Smith AK (2003) The origin of stationary planetary waves in the upper mesosphere. J Atmos Sci 60:3033–3041. https://doi.org/10.1175/1520-0469(2003)060%3c3033:TOOSPW%3e2.0.CO;2

Sukhodolov T, Rozanov E, Ball WT, Peter T, Schmutz W (2017) Modeling of the middle atmosphere response to 27-day solar irradiance variability. J Atmos Sol Terr Phys 152:50–61. https://doi.org/10.1016/j.jastp.2016.12.004

Takahashi Y, Okazaki Y, Sato M, Miyahara H, Sakanoi K, Hong PK et al (2010) 27-day variation in cloud amount in the Western Pacific warm pool region and relationship to the solar cycle. Atmos Chem Phys 10:1577–1584. https://doi.org/10.5194/acp-10-1577-2010

Thiéblemont R, Bekki S, Marchand M, Bossay S, Schmidt H, Meftah M et al (2018) Nighttime mesospheric/lower thermospheric tropical ozone response to the 27-day solar rotational cycle: ENVISAT-GOMOS satellite observations versus HAMMONIA idealized chemistry-climate model simulations. J Geophys Res Atmos 123:8883–8896. https://doi.org/10.1029/2017JD027789

Tsuchiya C, Sato K, Alexander MJ, Hoffmann L (2016) MJO-related intraseasonal variation of gravity waves in the southern Hemisphere tropical stratosphere revealed by high-resolution AIRS observations. J Geophys Res Atmos 121:7641–7651. https://doi.org/10.1002/2015JD024463

Tsuda T, Ratnam MV, Alexander SP, Kozu T, Takayabu Y (2009) Temporal and spatial distributions of atmospheric wave energy in the equatorial stratosphere revealed by GPS radio occultation temperature data obtained with the CHAMP satellite during 2001–2006. Earth Planets Space 61:525–533. https://doi.org/10.1186/BF03353169

Vincent RA, Alexander MJ (2000) Gravity waves in the tropical lower stratosphere: an observational study of seasonal and interannual variability. J Geophys Res Atmos 105:17971–17982. https://doi.org/10.1029/2000JD900196

Xu J, Wang W, Lei J, Sutton EK, Chen G (2011) The effect of periodic variations of thermospheric density on CHAMP and GRACE orbits. J Geophys Res Space Phys 116:A02315. https://doi.org/10.1029/2010JA015995

Yamanaka MD, Ogino S, Kondo S, Shimomai T, Fukao S, Shibagaki Y et al (1996) Inertio-gravity waves and subtropical multiple tropopauses: vertical wavenumber spectra of wind and temperature observed by the MU radar, radiosondes and operational rawinsonde network. J Atmos Terr Phys 58(6):785–805. https://doi.org/10.1016/0021-9169(95)00074-7

Yoshida S, Tsuda T, Shimizu A, Nakamura T (1999) Seasonal variations of 3.0~3.8-day ultra-fast Kelvin waves observed with a meteor wind radar and radiosonde in Indonesia. Earth Planets Space 51:675–684. https://doi.org/10.1186/BF03353225

Zhang C (2005) Madden–Julian oscillation. Rev Geophys 43:RG2003. https://doi.org/10.1029/2004RG000158

Zhang SD, Yi F (2007) Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China. J Geophys Res Atmos 112:D05109. https://doi.org/10.1029/2006JD007487

Zhang SD, Yi F, Huang CM, Huang KM (2012) High vertical resolution analyses of gravity waves and turbulence at a midlatitude station. J Geophys Res Atmos 117:D02103. https://doi.org/10.1029/2011JD016587

Ziemke JR, Stanford JL (1991) One-to-two month oscillations: observed high-latitude tropospheric and stratospheric response to tropical forcing. J Atmos Sci 48:1336–1347. https://doi.org/10.1175/1520-0469(1991)048%3c1336:OTTMOO%3e2.0.CO;2