A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Artigues, C., Demassey, S., & Neron, E. (2010). Resource-constrained project scheduling: Models, algorithms, extensions and applications (Vol. 37). Hoboken: Wiley.
Artigues, C., Michelon, P., & Reusser, S. (2003). Insertion techniques for static and dynamic resource-constrained project scheduling. European Journal of Operational Research, 149(2), 249–267.
Aytug, H., Lawley, M. A., McKay, K., Mohan, S., & Uzsoy, R. (2005). Executing production schedules in the face of uncertainties: A review and some future directions. European Journal of Operational Research, 161(1), 86–110.
Balas, E. (1969). Machine sequencing via disjunctive graphs: An implicit enumeration algorithm. Operations Research, 17(6), 941–957.
Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199–240.
Blazewicz, J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics, 5(1), 11–24.
Bruni, M. E., Beraldi, P., Guerriero, F., & Pinto, E. (2011). A heuristic approach for resource constrained project scheduling with uncertain activity durations. Computers & Operations Research, 38(9), 1305–1318.
Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Management Science, 6(1), 73–79.
Christofides, N., Alvarez-Valdés, R., & Tamarit, J. M. (1987). Project scheduling with resource constraints: A branch and bound approach. European Journal of Operational Research, 29(3), 262–273.
Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive policies for the stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 214(2), 308–316.
Demassey, S., Artigues, C., & Michelon, P. (2005). Constraint-propagation-based cutting planes: An application to the resource-constrained project scheduling problem. INFORMS Journal on Computing, 17(1), 52–65.
Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Management Science, 38(12), 1803–1818.
Demeulemeester, E., & Herroelen, W. (1997). New benchmark results for the resource-constrained project scheduling problem. Management Science, 43(11), 1485–1492.
Demeulemeester, E., & Herroelen, W. (2011). Robust project scheduling (Vol. 3). Norwell: Now Publishers Inc.
Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). New York: Freeman.
Hardin, J. R., Nemhauser, G. L., & Savelsbergh, M. W. P. (2008). Strong valid inequalities for the resource-constrained scheduling problem with uniform resource requirements. Discrete Optimization, 5(1), 19–35.
Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-constrained project scheduling: A survey of recent developments. Computers & Operations Research, 25(4), 279–302.
Herroelen, W., & Leus, R. (2004). The construction of stable project baseline schedules. European Journal of Operational Research, 156(3), 550–565.
Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: A review and classification of procedures. International Journal of Production Research, 42(8), 1599–1620.
Igelmund, G., & Radermacher, F. J. (1983a). Algorithmic approaches to preselective strategies for stochastic scheduling problems. Networks, 13(1), 29–48.
Igelmund, G., & Radermacher, F. J. (1983b). Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks, 13(1), 1–28.
Klein, R., & Scholl, A. (1999). Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling. European Journal of Operational Research, 112(2), 322–346.
Kolisch, R., & Sprecher, A. (1997). Psplib-a project scheduling problem library: Or software-orsep operations research software exchange program. European Journal of Operational Research, 96(1), 205–216.
Koné, O., Artigues, C., Lopez, P., & Mongeau, M. (2011). Event-based milp models for resource-constrained project scheduling problems. Computers & Operations Research, 38(1), 3–13.
Leus, R. (2011a). Resource allocation by means of project networks: Complexity results. Networks, 58(1), 59–67.
Leus, R. (2011b). Resource allocation by means of project networks: Dominance results. Networks, 58(1), 50–58.
Luedtke, J., & Ahmed, S. (2008). A sample approximation approach for optimization with probabilistic constraints. SIAM Journal on Optimization, 19(2), 674–699.
Luedtke, J., Ahmed, S., & Nemhauser, G. L. (2010). An integer programming approach for linear programs with probabilistic constraints. Mathematical Programming, 122(2), 247–272.
Marshall, L. (1973). Fisher. Optimal solution of scheduling problems using lagrange multipliers: Part i. Operations Research, 21(5), 1114–1127.
Mehta, S. V., & Uzsoy, R. M. (1998). Predictable scheduling of a job shop subject to breakdowns. IEEE Transactions on Robotics and Automation, 14(3), 365–378.
Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science, 44(5), 714–729.
Möhring, R. H., Schulz, A. S., Stork, F., & Uetz, M. (2003). Solving project scheduling problems by minimum cut computations. Management Science, 49(3), 330–350.
Möhring, R. H., & Stork, F. (2000). Linear preselective policies for stochastic project scheduling. Mathematical Methods of Operations Research, 52(3), 501–515.
Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization (Vol. 18). New York: Wiley.
Olaguibel, R. A.-V., & Goerlich, J. M. T. (1993). The project scheduling polyhedron: Dimension, facets and lifting theorems. European Journal of Operational Research, 67(2), 204–220.
Padberg, M., & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33(1), 60–100.
Prékopa, A. (2003). Probabilistic programming. Handbooks in Operations Research and Management Science, 10, 267–351.
Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with limited resources: A zero-one programming approach. Management Science, 16(1), 93–108.
Ruszczyński, A. (2002). Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Mathematical Programming, 93(2), 195–215.
Stork, F., & Uetz, M. (2005). On the generation of circuits and minimal forbidden sets. Mathematical Programming, 102(1), 185–203.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227–240.
Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Production Research, 44(2), 215–236.