A purely proactive scheduling procedure for the resource-constrained project scheduling problem with stochastic activity durations

Journal of Scheduling - Tập 19 Số 4 - Trang 409-428 - 2016
Patricio Lamas1, Erik Demeulemeester1
1Department of Decision Sciences and Information Management, Faculty of Business and Economics, Research Center for Operations Management, KU Leuven, Leuven, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Artigues, C., Demassey, S., & Neron, E. (2010). Resource-constrained project scheduling: Models, algorithms, extensions and applications (Vol. 37). Hoboken: Wiley.

Artigues, C., Michelon, P., & Reusser, S. (2003). Insertion techniques for static and dynamic resource-constrained project scheduling. European Journal of Operational Research, 149(2), 249–267.

Aytug, H., Lawley, M. A., McKay, K., Mohan, S., & Uzsoy, R. (2005). Executing production schedules in the face of uncertainties: A review and some future directions. European Journal of Operational Research, 161(1), 86–110.

Balas, E. (1969). Machine sequencing via disjunctive graphs: An implicit enumeration algorithm. Operations Research, 17(6), 941–957.

Bartusch, M., Möhring, R. H., & Radermacher, F. J. (1988). Scheduling project networks with resource constraints and time windows. Annals of Operations Research, 16(1), 199–240.

Birge, J. R., & Louveaux, F. V. (2011). Introduction to stochastic programming. New York: Springer.

Blazewicz, J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1983). Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics, 5(1), 11–24.

Bruni, M. E., Beraldi, P., Guerriero, F., & Pinto, E. (2011). A heuristic approach for resource constrained project scheduling with uncertain activity durations. Computers & Operations Research, 38(9), 1305–1318.

Charnes, A., & Cooper, W. W. (1959). Chance-constrained programming. Management Science, 6(1), 73–79.

Christofides, N., Alvarez-Valdés, R., & Tamarit, J. M. (1987). Project scheduling with resource constraints: A branch and bound approach. European Journal of Operational Research, 29(3), 262–273.

Deblaere, F., Demeulemeester, E., & Herroelen, W. (2011). Proactive policies for the stochastic resource-constrained project scheduling problem. European Journal of Operational Research, 214(2), 308–316.

Demassey, S., Artigues, C., & Michelon, P. (2005). Constraint-propagation-based cutting planes: An application to the resource-constrained project scheduling problem. INFORMS Journal on Computing, 17(1), 52–65.

Demeulemeester, E., & Herroelen, W. (1992). A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Management Science, 38(12), 1803–1818.

Demeulemeester, E., & Herroelen, W. (1997). New benchmark results for the resource-constrained project scheduling problem. Management Science, 43(11), 1485–1492.

Demeulemeester, E., & Herroelen, W. (2011). Robust project scheduling (Vol. 3). Norwell: Now Publishers Inc.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability (Vol. 174). New York: Freeman.

Hardin, J. R., Nemhauser, G. L., & Savelsbergh, M. W. P. (2008). Strong valid inequalities for the resource-constrained scheduling problem with uniform resource requirements. Discrete Optimization, 5(1), 19–35.

Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-constrained project scheduling: A survey of recent developments. Computers & Operations Research, 25(4), 279–302.

Herroelen, W., & Leus, R. (2004). The construction of stable project baseline schedules. European Journal of Operational Research, 156(3), 550–565.

Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: A review and classification of procedures. International Journal of Production Research, 42(8), 1599–1620.

Igelmund, G., & Radermacher, F. J. (1983a). Algorithmic approaches to preselective strategies for stochastic scheduling problems. Networks, 13(1), 29–48.

Igelmund, G., & Radermacher, F. J. (1983b). Preselective strategies for the optimization of stochastic project networks under resource constraints. Networks, 13(1), 1–28.

Klein, R., & Scholl, A. (1999). Computing lower bounds by destructive improvement: An application to resource-constrained project scheduling. European Journal of Operational Research, 112(2), 322–346.

Kolisch, R., & Sprecher, A. (1997). Psplib-a project scheduling problem library: Or software-orsep operations research software exchange program. European Journal of Operational Research, 96(1), 205–216.

Koné, O., Artigues, C., Lopez, P., & Mongeau, M. (2011). Event-based milp models for resource-constrained project scheduling problems. Computers & Operations Research, 38(1), 3–13.

Leus, R. (2011a). Resource allocation by means of project networks: Complexity results. Networks, 58(1), 59–67.

Leus, R. (2011b). Resource allocation by means of project networks: Dominance results. Networks, 58(1), 50–58.

Luedtke, J., & Ahmed, S. (2008). A sample approximation approach for optimization with probabilistic constraints. SIAM Journal on Optimization, 19(2), 674–699.

Luedtke, J., Ahmed, S., & Nemhauser, G. L. (2010). An integer programming approach for linear programs with probabilistic constraints. Mathematical Programming, 122(2), 247–272.

Marshall, L. (1973). Fisher. Optimal solution of scheduling problems using lagrange multipliers: Part i. Operations Research, 21(5), 1114–1127.

Mehta, S. V., & Uzsoy, R. M. (1998). Predictable scheduling of a job shop subject to breakdowns. IEEE Transactions on Robotics and Automation, 14(3), 365–378.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science, 44(5), 714–729.

Möhring, R. H., Schulz, A. S., Stork, F., & Uetz, M. (2003). Solving project scheduling problems by minimum cut computations. Management Science, 49(3), 330–350.

Möhring, R. H., & Stork, F. (2000). Linear preselective policies for stochastic project scheduling. Mathematical Methods of Operations Research, 52(3), 501–515.

Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization (Vol. 18). New York: Wiley.

Olaguibel, R. A.-V., & Goerlich, J. M. T. (1993). The project scheduling polyhedron: Dimension, facets and lifting theorems. European Journal of Operational Research, 67(2), 204–220.

Padberg, M., & Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Review, 33(1), 60–100.

Prékopa, A. (2003). Probabilistic programming. Handbooks in Operations Research and Management Science, 10, 267–351.

Pritsker, A. A. B., Waiters, L. J., & Wolfe, P. M. (1969). Multiproject scheduling with limited resources: A zero-one programming approach. Management Science, 16(1), 93–108.

Ruszczyński, A. (2002). Probabilistic programming with discrete distributions and precedence constrained knapsack polyhedra. Mathematical Programming, 93(2), 195–215.

Stork, F., & Uetz, M. (2005). On the generation of circuits and minimal forbidden sets. Mathematical Programming, 102(1), 185–203.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2005). The use of buffers in project management: The trade-off between stability and makespan. International Journal of Production Economics, 97(2), 227–240.

Van de Vonder, S., Demeulemeester, E., Herroelen, W., & Leus, R. (2006). The trade-off between stability and makespan in resource-constrained project scheduling. International Journal of Production Research, 44(2), 215–236.

Van de Vonder, S., Demeulemeester, E., & Herroelen, W. (2008). Proactive heuristic procedures for robust project scheduling: An experimental analysis. European Journal of Operational Research, 189(3), 723–733.