A prospective study of time to healing and hypertrophic scarring in paediatric burns: every day counts

Oxford University Press (OUP) - Tập 5 - Trang 1-6 - 2017
Elizabeth Chipp1, Lisa Charles1, Clare Thomas1, Kate Whiting1, Naiem Moiemen1, Yvonne Wilson1
1Burns Centre, Birmingham Children’s Hospital, Birmingham, UK

Tóm tắt

It is commonly accepted that burns taking longer than 3 weeks to heal have a much higher rate of hypertrophic scarring than those which heal more quickly. However, some of our patients develop hypertrophic scars despite healing within this 3-week period. We performed a prospective study of 383 paediatric burns treated non-operatively at a regional burns centre over a 2-year period from May 2011 to April 2013. Scar assessment was performed by a senior burns therapist using the Vancouver Scar Scale. Overall rates of hypertrophic scarring were 17.2%. Time to healing was the strongest predictor of developing hypertrophic scarring, and the earliest hypertrophic scar developed in a patient who was healed after 8 days. The risk of hypertrophic scarring was multiplied by 1.138 for every additional day taken for the burn wound to heal. There was a trend towards higher rates of hypertrophic scarring in non-white skin types but this did not reach statistical significance. The risk of hypertrophic scarring increases with every day and, therefore, every effort should be made to get the wound healed as quickly as possible, even within the traditional 3-week period usually allowed for healing. We believe that the traditional dogma of aiming for healing within 3 weeks is overly simplistic and should be abandoned: in paediatric burns, every day counts. Not applicable.

Tài liệu tham khảo

Bock O, Schmid-Ott G, Malewski P, Mrowietz U. Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res. 2006;297:433–8. Lawrence JW, Mason ST, Schomer K, Klein MB. Epidemiology and impact of scarring after burn injury: a systematic review of the literature. J Burn Care Res. 2012;33(1):136–46. Bae SH, Bae YC. Analysis of frequency of use of different scar assessment scales based on the scar condition and treatment method. Arch Plast Surg. 2014;41(2):111–5. Deitch EA, Wheelahan TM, Rose MP, Clothier J, Cotter J. Hypertrophic burn scars: analysis of variables. J Trauma. 1983;23(10):895–8. Cubison TC, Pape SA, Parkhouse N. Evidence for the link between healing time and the development of hypertrophic scars (HTS) in paediatric burns due to scald injury. Burns. 2006;32(8):992–9. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol. 1988;124(6):869–71. Nedelec B, Shankowsky HA, Tredget EE. Rating the resolving hypertrophic scar: comparison of the Vancouver Scar Scale and scar volume. J Burn Care Rehabil. 2000;21(3):205–12. Sullivan T, Smith J, Kermode J, McIver E, Courtemanche DJ. Rating the burn scar. J Burn Care Rehab. 1990;11(3):256–60. Bombaro KM, Engrav LH, Carrougher GJ, Wiechman SA, Faucher L, Costa BA, et al. What is the prevalence of hypertrophic scarring following burns? Burns. 2003;29(4):299–302. Mahdavian Delavary B, van der Veer WM, Ferreira JA, Niessen FB. Formation of hypertrophic scars: evolution and susceptibility. J Plast Surg Hand Surg. 2012;46(2):95–101. Hassan S, Reynolds G, Clarkson J, Brooks P. Challenging the dogma: relationship between time to healing and formation of hypertrophic scars after burn injuries. J Burn Care Res. 2014;35(2):e118–24. Thompson CM, Hocking AM, Honari S, Muffley LA, Ga M, Gibran NS. Genetic risk factors for hypertrophic scar development. J Burn Care Res. 2013;34(5):477–82. Gangemi EN, Gregori D, Berchialla P, Zingarelli E, Cairo M, Bollero D, et al. Epidemiology and risk factors for pathologic scarring after burn wounds. Arch Facial Plast Surg. 2008;10(2):93–102. Tyack Z, Wasiak J, Spinks A, Kimble R, Simons M. A guide to choosing a burn scar rating scale for clinical or research use. Burns. 2013;39(7):1341–50. Soltani AM, Francis CS, Motamed A, Karatsonyi AL, Hammoudeh JA, Sanchez-Lara PA, et al. Hypertrophic scarring in cleft lip repair: a comparison of incidence among ethnic groups. Clin Epidemiol. 2012;4:187–91. Berchialla P, Gangemi EN, Foltran F, Haxhiaj A, Buja A, Lazzarato F, et al. Predicting severity of pathological scarring due to burn injuries: a clinical decision making tool using Bayesian networks. Int Wound J. 2014;11(3):246–52. Simpson L. Population forecasts for Birmingham with an ethnic group dimension. CCSR Working Paper 2007-2012. http://hummedia.manchester.ac.uk/institutes/cmist/archive-publications/working-papers/2007/2007-12-population-forecasts-for-birmingham.pdf. Accessed 19 Dec 2016. Spurr ED, Shakespeare PG. Incidence of hypertrophic scarring in burn-injured children. Burns. 1990;16:179–81. Zeitlin R, Järnberg J, Somppi E, Sundell B. The late appearance of scars after burns in childhood. Scand J Plast Reconstr Hand Surg. 1997;31(4):319–25. Dedovic Z, Koupilova I, Brychta P. Time trends in incidence of hypertrophic scarring in children treated for burns. Acta Chir Plast. 1999;41:87–90.