A properly discontinuous free group of affine transformations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abels, H.: Properly discontinuous groups of affine transformations: a survey. Geom. Dedicata 87, 309–333 (2001)
Abels, H., Margulis, G.A., Soifer, G.A.: Free properly discontinuous group of affine transformations. J. Differ. Geom. 60, 315–344 (2002)
Charette, V.: Groups generated by spine reflections admitting crooked fundamental domains, “Discrete groups and geometric structures: workshop on discrete groups and geometric structures,” (Karel Dekimpe, Paul Igodt, Alain Valette eds.). Contemp. Math. 501, 133–147 (2009)
Charette, V., Drumm, T.A.: The Margulis invariant for parabolic transformations. Proc. Am. Math. Soc. 133(8), 2439–2447 (2005)
Charette, V., Drumm, T., Goldman, W.: Affine deformations of a threeholed sphere. Geom. Topol. 14(3), 1355–1382 (2010)
Conrad, K.: Pythagorean descent. http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/descentPythag.pdf
Danciger, J., Guéritaud, F., Kassel, F.: Geometry and topology of complete Lorentz spacetimes of constant curvature (submitted)
Margulis, G.A.: Complete affine locally flat manifolds with a free fundamental group. J. Soviet Math. 134, 129–135 (1987)
Mycielski, J.: Non-amenable groups with amenable action and some paradoxical decompositions in the plane. Colloq. Math. 75, 149–157 (1998)
Tomkowicz, G.: On decompositions of the hyperbolic plane satisfying many congruences. Bull. Lond. Math. Soc. 49, 133–140 (2017)
Tomkowicz, G.: Banach–Tarski paradox in some complete manifolds. Proc. Am. Math. Soc. 145, 5359–5362 (2017)