A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and Kolmogorov equations by means of deep learning. arXiv:1806.00421, (2018)
Beck, C., E, W., Jentzen, A.: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations. J. Nonlinear Sci. 29, 1563–1619 (2019)
Beck, C., Hornung, F., Hutzenthaler, M., Jentzen, A., Kruse, T.: Overcoming the curse of dimensionality in the numerical approximation of Allen–Cahn partial differential equations via truncated full-history recursive multilevel Picard approximations. arXiv:1907.06729 (2019)
Becker, S., Cheridito, P., Jentzen, A.: Deep optimal stopping. J. Mach. Learn. Res. 20(74), 1–25 (2019)
Berner, J., Grohs, P., Jentzen, A.: Analysis of the generalization error: empirical risk minimization over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations. arXiv:1809.03062, (2018)
E, W., Han, J., Jentzen, A.: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 5(4), 349–380 (2017)
E, W., Hutzenthaler, M., Jentzen, A., Kruse, T.: Multilevel Picard iterations for solving smooth semilinear parabolic heat equations. arXiv:1607.03295, (2016)
E, W., Hutzenthaler, M., Jentzen, A., Kruse, T.: On multilevel Picard numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations. J. Sci. Comput. 79(3), 1534–1571 (2019)
E, W., Yu, B.: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6(1), 1–12 (2018)
Elbrächter, D., Grohs, P., Jentzen, A., Schwab, C.: DNN expression rate analysis of high-dimensional PDEs: application to option pricing. arXiv:1809.07669, (2018)
Fujii, M., Takahashi, A., Takahashi, M.: Asymptotic expansion as prior knowledge in deep learning method for high dimensional BSDEs. arXiv:1710.07030, (2017)
Giles, M., Jentzen, A., Welti, T.: Generalised multilevel Picard approximations. arXiv:1911.03188, (2019)
Grohs, P., Hornung, F., Jentzen, A., von Wurstemberger, P.: A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black–Scholes partial differential equations. Mem. Am. Math. Soc. arxiv:1809.02362, (2020)
Han, J., Jentzen, A., E, W.: Solving high-dimensional partial differential equations using deep learning. Proc. Natl. Acad. Sci. 115(34), 8505–8510 (2018)
Henry-Labordere, P.L.: Deep primal-dual algorithm for BSDEs: applications of machine learning to CVA and IM. Available at SSRN: https://ssrn.com/abstract=3071506, (2017)
Hutzenthaler, M., Jentzen, A., Kruse, T.: Overcoming the curse of dimensionality in the numerical approximation of parabolic partial differential equations with gradient-dependent nonlinearities. arXiv:1912.02571, (2019)
Hutzenthaler, M., Jentzen, A., Kruse, T., Nguyen, T.A., von Wurstemberger, P.: Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial differential equations. arXiv:1807.01212, (2018)
Hutzenthaler, M., Jentzen, A., von Wurstemberger, P.: Overcoming the curse of dimensionality in the approximative pricing of financial derivatives with default risks. Electron. J. Probab. arXiv:1903.05985, (2019)
Hutzenthaler, M., Kruse, T.: Multi-level Picard approximations of high-dimensional semilinear parabolic differential equations with gradient-dependent nonlinearities. SIAM J. Numer. Anal. arxiv:1711.01080 (2020)
Jentzen, A., Salimova, D., Welti, T.: A proof that deep artificial neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with constant diffusion and nonlinear drift coefficients. arXiv:1809.07321, (2018)
Khoo, Y., Lu, J., Ying, L.: Solving parametric PDE problems with artificial neural networks. arXiv:1707.03351, (2017)
Mishra, S.: A machine learning framework for data driven acceleration of computations of differential equations. arXiv:1807.09519, (2018)
Nabian, M. A., Meidani, H.: A deep neural network surrogate for high-dimensional random partial differential equations. arXiv:1806.02957, (2018)
Raissi, M.: Forward–backward stochastic neural networks: deep learning of high-dimensional partial differential equations. arXiv:1804.07010, (2018)