A proof of the Donaldson–Thomas crepant resolution conjecture
Tóm tắt
We prove the crepant resolution conjecture for Donaldson–Thomas invariants of hard Lefschetz 3-Calabi–Yau (CY3) orbifolds, formulated by Bryan–Cadman–Young, interpreting the statement as an equality of rational functions. In order to do so, we show that the generating series of stable pair invariants on any CY3 orbifold is the expansion of a rational function. As a corollary, we deduce a symmetry of this function induced by the derived dualising functor. Our methods also yield a proof of the orbifold DT/PT correspondence for multi-regular curve classes on hard Lefschetz CY3 orbifolds.
Tài liệu tham khảo
Abramovich, D., Corti, A., Vistoli, A.: Twisted bundles and admissible covers. Commun. Algebra 31(8), 3547–3618 (2003) (Special issue in honor of Steven L. Kleiman)
Abuaf, Roland: Categorical crepant resolutions for quotient singularities. Mathematische Zeitschrift 282(3–4), 679–689 (2016)
Arcara, D., Bertram, A.: Bridgeland-stable moduli spaces for \(K\)-trivial surfaces. J. Eur. Math. Soc. (JEMS) 15(1), 1–38 (2013) (With an appendix by M. Lieblich)
Behrend, K.: Donaldson-Thomas type invariants via microlocal geometry. Ann. Math. (2) 170(3), 1307–1338 (2009)
Behrend, K., Fantechi, B.: Symmetric obstruction theories and Hilbert schemes of points on threefolds. Algebra Number Theory 2(3), 313–345 (2008)
Behrend, K., Ronagh, P.: The inertia operator on the motivic Hall algebra. Compos. Math. 155(3), 528–598 (2019)
Bridgeland, T.: Flops and derived categories. Invent. Math. 147(3), 613–632 (2002)
Bridgeland, T.: Hall algebras and curve-counting invariants. J. Am. Math. Soc. 24(4), 969–998 (2011)
Bridgeland, T.: An introduction to motivic Hall algebras. Adv. Math. 229(1), 102–138 (2012)
Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001)
Bryan, J., Cadman, C., Young, B.: The orbifold topological vertex. Adv. Math. 229(1), 531–595 (2012)
Bryan, J., Gholampour, A.: The quantum McKay correspondence for polyhedral singularities. Invent. Math. 178(3), 655–681 (2009)
Bryan, J., Graber, T: The crepant resolution conjecture. In: Algebraic geometry—Seattle 2005. Part 1, volume 80 of Proc. Sympos. Pure Math., pp. 23–42. Amer. Math. Soc., Providence, RI (2009)
Bryan, J., Steinberg, D.: Curve counting invariants for crepant resolutions. Trans. Am. Math. Soc. 368(3), 1583–1619 (2016)
Bussi, V.: Generalized Donaldson–Thomas theory over fields \({\mathbf{K}} \ne {{\mathbf{C}}}\). ArXiv e-prints (2014)
Bökstedt, Marcel, Neeman, Amnon: Homotopy limits in triangulated categories. Compositio Mathematica 86(2), 209–234 (1993)
Bühler, T.: Exact categories. Expo. Math. 28(1), 1–69 (2010)
Calabrese, J.: Donaldson–Thomas invariants and flops. J. Reine Angew. Math. 716, 103–145 (2016)
Calabrese, J.: On the crepant resolution conjecture for Donaldson–Thomas invariants. J. Algebraic Geom. 25(1), 1–18 (2016)
Chen, J.-C., Tseng, H.-H.: A note on derived McKay correspondence. Math. Res. Lett. 15(3), 435–445 (2008)
Coates, T., Iritani, H., Tseng, H.-H.: Wall-crossings in toric Gromov–Witten theory. I. Crepant examples. Geom. Topol. 13(5), 2675–2744 (2009)
Happel, D., Reiten, I., Smalø, S.: Tilting in abelian categories and quasitilted algebras. Mem. Am. Math. Soc. 120(575), viii+ 88 (1996)
Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd edn. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2010)
Joyce, D.: Configurations in abelian categories. II. Ringel-Hall algebras. Adv. Math. 210(2), 635–706 (2007)
Joyce, D.: Configurations in abelian categories. III. Stability conditions and identities. Adv. Math. 215(1), 153–219 (2007)
Joyce, D., Song, Y.: A theory of generalized Donaldson-Thomas invariants. Mem. Am. Math. Soc. 217(1020), iv+199 (2012)
Keel, S., Mori, S.: Quotients by groupoids. Ann. Math. (2) 145(1), 193–213 (1997)
Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998)
Lieblich, M.: Moduli of complexes on a proper morphism. J. Algebraic Geom. 15(1), 175–206 (2006)
Lowrey Parker, E.: The moduli stack and motivic Hall algebra for the bounded derived category. arXiv:1110.5117 [math] (2011)
Nakamura, I.: Hilbert schemes of abelian group orbits. J. Algebraic Geom. 10(4), 757–779 (2001)
Nironi, F.: Moduli Spaces of Semistable Sheaves on Projective Deligne–Mumford Stacks. arXiv:0811.1949 (2008)
Nironi, F.: Moduli Spaces of Semistable Sheaves on Projective Deligne-Mumford Stacks. Ph.D. thesis, Scuola Internazionale Superiore di Studi Avanzati (SISSA). http://hdl.handle.net/20.500.11767/4165 (2008)
Oberdieck, G.: On reduced stable pair invariants. Math. Z. 289(1–2), 323–353 (2018)
Olsson, M., Starr, J.: Quot functors for Deligne–Mumford stacks. Commun. Algebra 31(8), 4069–4096 (2003). (Special issue in honor of Steven L. Kleiman)
Pandharipande, R., Thomas, R.P.: Curve counting via stable pairs in the derived category. Invent. Math. 178(2), 407–447 (2009)
Preygel, A.: Some remarks on shifted symplectic structures on non-compact mapping spaces. Available at http://www.tolypreygel.com/papers/note_shifted_sympl_open.pdf
Ross, D.: Donaldson–Thomas theory and resolutions of toric \(A\)-singularities. Selecta Math. (N.S.) 23(1), 15–37 (2017)
Rudakov, A.N.: Stability for an abelian category. J. Algebra 197(1), 231–245 (1997)
Simpson, Carlos T.: Moduli of representations of the fundamental group of a smooth projective variety I Institut des Hautes Études Scientifiques. Publications Mathématiques 79, 47–129 (1994)
Stanley, R.P.: Enumerative combinatorics. Vol. 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1997)
The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu (2017)
Thomas, R.P.: A holomorphic Casson invariant for Calabi–Yau 3-folds, and bundles on \(K3\) fibrations. J. Differ. Geom. 54(2), 367–438 (2000)
Toda, Y.: Limit stable objects on Calabi–Yau 3-folds. Duke Math. J. 149(1), 157–208 (2009)
Toda, Y.: Curve counting theories via stable objects I. DT/PT correspondence. J. Am. Math. Soc. 23(4), 1119–1157 (2010)
Toda, Y.: Generating functions of stable pair invariants via wall-crossings in derived categories. In: New Developments in Algebraic Geometry, Integrable Systems and Mirror Symmetry (RIMS, Kyoto, 2008), volume 59 of Adv. Stud. Pure Math., pp. 389–434. Math. Soc. Japan, Tokyo (2010)
Toda, Y.: Curve counting theories via stable objects II: DT/ncDT flop formula. J. Reine Angew. Math. 675, 1–51 (2013)
Toda, Y.: Hall algebras in the derived category and higher-rank DT invariants. Algebr. Geom. 7(3), 240–262 (2020)
Totaro, Burt: The resolution property for schemes and stacks. J. Reine Angew. Math. 577, 1–22 (2004)
Van den Bergh, M.: Three-dimensional flops and noncommutative rings. Duke Math. J. 122(3), 423–455 (2004)