A precipitation-hardened high-entropy alloy with outstanding tensile properties
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhou, 2007, Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys, Mater. Sci. Eng. A, 454–455, 260, 10.1016/j.msea.2006.11.049
Zhou, 2007, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90, 181904, 10.1063/1.2734517
Yeh, 2007, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103, 41, 10.1016/j.matchemphys.2007.01.003
Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377, 213, 10.1016/j.msea.2003.10.257
Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements novel alloy design concepts and outcomes, Adv. Eng. Mater, 6, 299, 10.1002/adem.200300567
Senkov, 2011, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Compd., 509, 6043, 10.1016/j.jallcom.2011.02.171
Senkov, 2014, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater, 68, 214, 10.1016/j.actamat.2014.01.029
Youssef, 2014, A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 3, 1
Yeh, 2013, Alloy design strategies and future trends in high-entropy alloys, JOM, 65, 1759, 10.1007/s11837-013-0761-6
Tsai, 2013, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater, 61, 4887, 10.1016/j.actamat.2013.04.058
Guo, 2012, Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study, Metall. Mater. Trans. A, 44, 1994, 10.1007/s11661-012-1474-0
Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581
Otto, 2013, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater, 61, 5743, 10.1016/j.actamat.2013.06.018
Wu, 2014, In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy, Appl. Phys. Lett., 104, 051910, 10.1063/1.4863748
Ren, 2012, Aging behavior of a CuCr2Fe2NiMn high-entropy alloy, Mater. Des., 33, 121, 10.1016/j.matdes.2011.07.005
Chen, 2010, Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys, Mater. Sci. Eng. A, 527, 5818, 10.1016/j.msea.2010.05.052
Choudhuri, 2015, Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy, Scr. Mater, 100, 36, 10.1016/j.scriptamat.2014.12.006
Zackay, 1967, The enhancement of ductility on high strength steels, Trans. ASM, 60, 8
Gan, 2011, 372
Krauss, 1999, Martensite in steel: strength and structure, Mater. Sci. Eng. A, 273–275, 40, 10.1016/S0921-5093(99)00288-9
Kim, 2003, Effect of Cu, Cr and Ni on mechanical properties of 0.15 wt.% C TRIP-aided cold rolled steels, Scr. Mater, 48, 539, 10.1016/S1359-6462(02)00477-3
Kamikawa, 2015, Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater, 83, 383, 10.1016/j.actamat.2014.10.010
Fleischer, 1963, Substitutional solution hardening, Acta Metall., 11
Courtney, 1990
Toda-Caraballo, 2015, Modelling solid solution hardening in high entropy alloys, Acta Mater, 85, 14, 10.1016/j.actamat.2014.11.014
Schuh, 2003, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni, Acta Mater., 51, 431, 10.1016/S1359-6454(02)00427-5
He, 2014, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater, 62, 105, 10.1016/j.actamat.2013.09.037
Hall, 1951, The deformation and ageing of mild steel III discussion of results, Proc. Phys. Soc. Sect. B, 64, 747, 10.1088/0370-1301/64/9/303
Petch, 1953, The cleavage strength of polycristals, J. Iron Steel Inst., 174
Liu, 2013, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scr. Mater, 68, 526, 10.1016/j.scriptamat.2012.12.002
Courtney, 2005
He, 2014, Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics, 55, 9, 10.1016/j.intermet.2014.06.015
Williamson, 1953, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1, 22, 10.1016/0001-6160(53)90006-6
Williamson, 1956, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philos. Mag., 1, 34, 10.1080/14786435608238074
Karolus, 2004, Crystallite size and lattice strain in nanocrystalline Ni–Mo alloys studied by Rietveld refinement, J. Alloy. Compd., 367, 235, 10.1016/j.jallcom.2003.08.044
Kumari, 2009, Strain anisotropy in freestanding germanium nanoparticles synthesized by ball milling, J. Nanosci. Nanotechno, 9, 5231, 10.1166/jnn.2009.1138
Sharma, 2013, Study of the effect of α irradiation on the microstructure and mechanical properties of nanocrystalline Ni, Acta Mater, 61, 3257, 10.1016/j.actamat.2013.02.014
Zhao, 2004, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater, 52, 4589, 10.1016/j.actamat.2004.06.017
Wen, 2013, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering, Acta Mater, 61, 2769, 10.1016/j.actamat.2012.09.036
Ma, 2014, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater, 62, 141, 10.1016/j.actamat.2013.09.042
Seidman, 2002, Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys, Acta Mater, 50, 4021, 10.1016/S1359-6454(02)00201-X
Booth-Morrison, 2011, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Mater, 59, 7029, 10.1016/j.actamat.2011.07.057
Argon, 1992, Creep resistance of CMSX-3 nickel base superalloy single crystals, Acta Mater, 40, 30