A precipitation-hardened high-entropy alloy with outstanding tensile properties

Acta Materialia - Tập 102 - Trang 187-196 - 2016
Junyang He1, Hui Wang1, Hailong Huang1, Xiandong Xu2, Mingwei Chen2, Yuan Wu1, Xiongjun Liu1, T.G. Nieh3, Ke An4, Zhaoping Lü1
1#N#State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
2Advanced Institute for Materials Research, Tohoku University - Sendai 980-8577, Japan
3Department of Materials Science and Engineering, The University of Tennessee, Knoxville,#N#TN 37996,#N#USA
4Spallation Neutron Source, Oak Ridge National Laboratory, TN 37996, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Zhou, 2007, Microstructure and compressive properties of multicomponent Alx(TiVCrMnFeCoNiCu)100−x high-entropy alloys, Mater. Sci. Eng. A, 454–455, 260, 10.1016/j.msea.2006.11.049

Zhou, 2007, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90, 181904, 10.1063/1.2734517

Yeh, 2007, Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements, Mater. Chem. Phys., 103, 41, 10.1016/j.matchemphys.2007.01.003

Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375–377, 213, 10.1016/j.msea.2003.10.257

Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements novel alloy design concepts and outcomes, Adv. Eng. Mater, 6, 299, 10.1002/adem.200300567

Senkov, 2011, Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy, J. Alloy. Compd., 509, 6043, 10.1016/j.jallcom.2011.02.171

Senkov, 2014, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater, 68, 214, 10.1016/j.actamat.2014.01.029

Youssef, 2014, A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 3, 1

Yeh, 2013, Alloy design strategies and future trends in high-entropy alloys, JOM, 65, 1759, 10.1007/s11837-013-0761-6

Tsai, 2013, Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys, Acta Mater, 61, 4887, 10.1016/j.actamat.2013.04.058

Guo, 2012, Local atomic structure of a high-entropy alloy: an X-ray and neutron scattering study, Metall. Mater. Trans. A, 44, 1994, 10.1007/s11661-012-1474-0

Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581

Otto, 2013, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater, 61, 5743, 10.1016/j.actamat.2013.06.018

Wu, 2014, In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy, Appl. Phys. Lett., 104, 051910, 10.1063/1.4863748

Ren, 2012, Aging behavior of a CuCr2Fe2NiMn high-entropy alloy, Mater. Des., 33, 121, 10.1016/j.matdes.2011.07.005

Chen, 2010, Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys, Mater. Sci. Eng. A, 527, 5818, 10.1016/j.msea.2010.05.052

Choudhuri, 2015, Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy, Scr. Mater, 100, 36, 10.1016/j.scriptamat.2014.12.006

Zackay, 1967, The enhancement of ductility on high strength steels, Trans. ASM, 60, 8

Gan, 2011, 372

Krauss, 1999, Martensite in steel: strength and structure, Mater. Sci. Eng. A, 273–275, 40, 10.1016/S0921-5093(99)00288-9

Kim, 2003, Effect of Cu, Cr and Ni on mechanical properties of 0.15 wt.% C TRIP-aided cold rolled steels, Scr. Mater, 48, 539, 10.1016/S1359-6462(02)00477-3

Kamikawa, 2015, Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater, 83, 383, 10.1016/j.actamat.2014.10.010

Fleischer, 1963, Substitutional solution hardening, Acta Metall., 11

Courtney, 1990

Toda-Caraballo, 2015, Modelling solid solution hardening in high entropy alloys, Acta Mater, 85, 14, 10.1016/j.actamat.2014.11.014

Schuh, 2003, The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni, Acta Mater., 51, 431, 10.1016/S1359-6454(02)00427-5

He, 2014, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater, 62, 105, 10.1016/j.actamat.2013.09.037

Hall, 1951, The deformation and ageing of mild steel III discussion of results, Proc. Phys. Soc. Sect. B, 64, 747, 10.1088/0370-1301/64/9/303

Petch, 1953, The cleavage strength of polycristals, J. Iron Steel Inst., 174

Liu, 2013, Grain growth and the Hall–Petch relationship in a high-entropy FeCrNiCoMn alloy, Scr. Mater, 68, 526, 10.1016/j.scriptamat.2012.12.002

Courtney, 2005

He, 2014, Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics, 55, 9, 10.1016/j.intermet.2014.06.015

Williamson, 1953, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1, 22, 10.1016/0001-6160(53)90006-6

Williamson, 1956, Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray debye-scherrer spectrum, Philos. Mag., 1, 34, 10.1080/14786435608238074

Karolus, 2004, Crystallite size and lattice strain in nanocrystalline Ni–Mo alloys studied by Rietveld refinement, J. Alloy. Compd., 367, 235, 10.1016/j.jallcom.2003.08.044

Kumari, 2009, Strain anisotropy in freestanding germanium nanoparticles synthesized by ball milling, J. Nanosci. Nanotechno, 9, 5231, 10.1166/jnn.2009.1138

Sharma, 2013, Study of the effect of α irradiation on the microstructure and mechanical properties of nanocrystalline Ni, Acta Mater, 61, 3257, 10.1016/j.actamat.2013.02.014

Zhao, 2004, Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing, Acta Mater, 52, 4589, 10.1016/j.actamat.2004.06.017

Wen, 2013, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering, Acta Mater, 61, 2769, 10.1016/j.actamat.2012.09.036

Ma, 2014, Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater, 62, 141, 10.1016/j.actamat.2013.09.042

Seidman, 2002, Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys, Acta Mater, 50, 4021, 10.1016/S1359-6454(02)00201-X

Booth-Morrison, 2011, Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys, Acta Mater, 59, 7029, 10.1016/j.actamat.2011.07.057

Argon, 1992, Creep resistance of CMSX-3 nickel base superalloy single crystals, Acta Mater, 40, 30

Dan Sathiaraj, 2015, Analysis of microstructure and microtexture during grain growth in low stacking fault energy equiatomic CoCrFeMnNi high entropy and Ni-60 wt.% Co alloys, J. Alloy. Compd., 637, 267, 10.1016/j.jallcom.2015.02.184