Một phương pháp thực tiễn để tái chế GTR trong chất thải-HDPE/ABS

Springer Science and Business Media LLC - Tập 29 - Trang 1-15 - 2022
Balázs Heller1, Lilla Simon-Stőger1, Éva Makó2, Csilla Varga1
1Sustainability Solutions Research Lab, Research Centre for Biochemical, Environmental and Chemical Engineering, Faculty of Engineering, University of Pannonia, Veszprém, Hungary
2Department of Materials Engineering, Research Centre for Engineering Sciences, Faculty of Engineering, University of Pannonia, Veszprém, Hungary

Tóm tắt

Chất thải polyethylene mật độ cao (w-HDPE)/ acrylonitrile–butadiene–styrene (ABS)/ cao su lốp xe đã được trộn nóng bằng phương pháp cán hai cuộn. Các hỗn hợp ba thành phần w-HDPE/ABS/GTR đã cho thấy sự không tương thích trong phạm vi tỷ lệ thành phần mà nghiên cứu, điều này thể hiện qua các đặc tính cơ học suy giảm. Hai loại chất tương hợp chính đã được lựa chọn để cải thiện tính tương thích giữa các thành phần từ đó nâng cao các đặc tính cơ học, bao gồm một copolymer olefin-maleic anhydride tổng hợp do các tác giả thực hiện và một polypropylene (MA-g-PP) được gắn maleic anhydride thương mại. Để xác định các đặc tính kéo và va đập của các hỗn hợp, các thử nghiệm cơ học đã được thực hiện bên cạnh việc quan sát kính hiển vi điện tử quét (SEM), nhiễu xạ tia X và phổ hồng ngoại biến đổi Fourier. Kết quả thuận lợi nhất trong thực tiễn công nghiệp là chất phụ gia thử nghiệm cho phép áp dụng nồng độ GTR cao hơn, do đó tạo cơ hội tái chế tỷ lệ cao hơn của GTR.

Từ khóa

#tái chế #GTR #polyethylene mật độ cao #acrylonitrile-butadiene-styrene #tính tương thích

Tài liệu tham khảo

Simon DÁ, Bárány T (2021) Effective thermomechanical devulcanization of ground tire rubber with a co-rotating twin-screw extruder. Polym Degrad Stabil 190:109626 Basso A, Zhang Y, Linnemann L, Hansen HN (2021) Study of the distribution of rubber particles in ground tire rubber/polypropylene blends. Mater Today-Proc 34:311–316 Bowles AJ, Fowler GD, O’Sullivan C, Parker K (2020) Sustainable rubber recycling from waste tyres by waterjet: A novel mechanistic and practical analysis. Sustainable Mater Technol 25:e00173 Colom X, Faliq A, Formela K, Canavate J (2016) FTIR spectroscopic and thermogravimetric characterization of ground tyre rubber devulcanized by microwave treatment. Polym Test 52:200–208 Dobrota D, Dobrota G, Dobrescu T (2020) Improvement of waste tyre recycling technology based on a new tyre markings. J Clean Prod 260:121–141 Formela K (2021) Sustainable development of waste tires recycling technologies – recent advances, challenges and future trends. Adv Ind Eng Poly Res 4:209–222 Hoyer S, Kroll L, Sykutera D (2020) Technology comparison for the production of fine rubber powder from end of life tyres. Procedia Manuf 43:193–200 Jia LC, Li YK, Yan DX (2017) Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon 121:267–273 Jiang C, Zhang Y, Ma L, Zhou L, He H (2018) Tailoring the properties of ground tire rubber/high-density polyethylene blends by combining surface devulcanization and in-situ grafting technology. Mater Chem Phys 220:161–170 Kakroodi AR, Rodrigue D (2013) Degradation behavior of maleated polyethylene/ground tire rubber thermoplastic elastomers with and without stabilizers. Polym Degrad Stabil 98:2184–2192 Lima P, Magalhaes da Silva SP, Oliveira J, Costa V (2015) Rheological properties of ground tyre rubber based thermoplastic elastomeric blends. Polym Test 45:58–67 Araujo-Morera J, Verdejo R, López-Manchado MA, Santana MH (2021) Sustainable mobility: The route of tires through the circular economy model. Waste Manage 126:309–322 Scaffaro R, Dintcheva NT, Nocilla MA, La Mantia FP (2005) Formulation, characterization and optimization of the processing condition of blends of recycled polyethylene and ground tyre rubber: Mechanical and rheological analysis. Polym Degrad Stabil 90:281–287 Sonnier R, Leroy E, Clerc L, Bergeret A, Lopez-Cuesta JM (2007) Polyethylene/ground tyre rubber blends: Influence of particle morphology and oxidation on mechanical properties. Polym Test 26:274–281 Essawy HA, El-Sabbagh SH, Hussein AI, Tawfik ME (2018) Novel poly(vinyl chloride) based thermoplastic elastomers incorporating vinyl-functionalized silicone rubber. J Macromol Sci A 55:507–512 Dobrota D, Petrescu V, Dimulescu CS, Oleksik M (2020) Preparation and Characterization of Composites Materials with Rubber Matrix and with Polyvinyl Chloride Addition (PVC). Polymers 12:1978–2005 Barghamadi M, Ghoreishy MHR, Karrabi M, Mohammadian-Gezaz S (2020) Investigation on the kinetics of cure reaction of acrylonitrile–butadiene rubber (NBR)/polyvinyl chloride (PVC)/graphene nanocomposite using various models. J Appl Polym Sci 137:48632–48637 Li J, Li C, Liao Q, Xu Z (2019) Environmentally-friendly technology for rapid on-line recycling of acrylonitrile-butadiene-styrene, polystyrene and polypropylene using near-infrared spectroscopy. J Clean Prod 213:838–844 Vazquez YV, Barbosa SE (2018) Compatibilization of HIPS/ABS blends from WEEE by using Styrene-Butadiene Rubber (SBR). J Clean Prod 217:381–390 Ding H, Guo L (2015) Effect of annealing temperature on low-temperature toughness of β-nucleated polypropylene random copolymer/ethylene-propylene-diene terpolymer blends. Chinese J Polym Sci 33:256–264 Bonda S, Mohanty S, Nayak SK (2014) Influence of compatibilizer on mechanical, morphological and rheological properties of PP/ABS blends. Iran Poly J 23:415–425 Lohar GS, Jogi BF (2018) Influence of Carbon Black (CB) on Mechanical Behaviour and Microscopic Analysis of Poly-propylene (PP)/Acrylonitrile-butadiene-styrene (ABS) Nanocomposites. Procedia Manuf 20:85–90 Elnaggar MY, Fathy ES, Hassan MM (2017) Effect of carbon fiber and gamma irradiation on acrylonitrile butadiene styrene/high density polyethylene composites. Polym Sci Ser B+ 59:472–478 Saxena D, Maiti P (2021) Utilization of ABS from plastic waste through single-step reactive extrusion of LDPE/ABS blends of improved properties. Polymer 221:123626 Zhang Z, Zhu W, Zhang J, Tian T (2015) Highly toughened poly (acrylonitrile–styrene–acrylic)/chlorinated polyethylene blends: Mechanical, rheological and thermal properties. Polym Test 44:23–29 Liu J, Zhu X (2019) Isotactic polypropylene toughened with poly(acrylonitrile–butadiene–styrene): Compatibilizing role of maleic anhydride grafted polypropylene. Polym Eng Sci 59:317–326 Ibrahim MH, Hassan A, Wahit A, Hasan MU (2017) Mechanical properties and morphology of polypropylene/poly(acrylonitrile-butadiene-styrene) nanocomposites: Effect of compatibilizer and montmorillonite content. J Elastom Plat 49:209–225 Rigon D, Ricotta M, Meneghetti G (2020) A literature survey on structural integrity of 3D printed virgin and recycled ABS and PP compounds. Procedia Struct Integrity 28:1655–1663 Lee HG, Sung YT, Lee YK, Kim WN, Yoon HG, Lee HS (2009) Effects of PP-g-MAH on the Mechanical, morphological and rheological properties of polypropylene and poly(acrylonitrile-butadiene-styrene) blends. Macromol Res 17:417–423 Kum CK, Sung YT, Kim YS, Lee HG, Kim WN, Lee HS, Yoon HG (2007) Effects of compatibilizer on mechanical, morphological, and rheological properties of polypropylene/poly(acrylonitrile-butadiene-styrene) blends. Macromol Res 15:308–314 Turner JE (1976) (BANSTAR Co.). U.S 4,110,420, June 25, 1976 San-Gil-Leon A, Stradi-Granados BA (2016) Determination of thermal and mechanical properties of HDPE-based polymer blends for use in traffic signs. AIMS Material Science 3:722–736 Wu DY, Bateman S, Partlett M (2007) Ground rubber/acrylonitrile–butadiene–styrene composites. Compos Sci Technol 67:1909–1919 Lu X, Wang W, Yu L (2014) Waste ground rubber tire powder/thermoplastic vulcanizate blends: Preparation, characterization, and compatibility. J Appl Polym Sci 131:39868 Kakroodi AR, Rodrigue D (2013) Highly filled thermoplastic elastomers from ground tire rubber, maleated polyethylene and high density polyethylene. Plast Rubber Compos 42:115–122 Ramarad S, Khalid M, Ratnam CT, Chuah AL, Rashmi W (2015) Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog Mater Sci 72:100–140 Formela M, Haponiuk J, Jasinska-Walc L, Formela K (2014) Compatibilization of polymeric composition filled with ground tire rubber – short review. Chem Chem Technol 4:445–450 Song P, Li S, Wang S (2017) Interfacial interaction between degraded ground tire rubber and polyethylene. Polym Degrad Stabil 143:85–94 Sonnier R, Leroy E, Clerc L, Bergeret A, Lopez-Cuesta J (2006) Compatibilisation of polyethylene/ground tyre rubber blends by γ irradiation. Polym Degrad Stabil 91:2375–2379 Simon-Stőger L, Cs V, Greczula E, Nagy B (2019) A journey into recycling of waste elastomers via a novel type of compatibilizing additives. Exp Pol Let 13:443–445 Colom X, Canavate J, Carillo F, Sunol JJ (2009) Effect of the particle size and acid pretreatments on compatibility and properties of recycled HDPE plastic bottles filled with ground tyre powder. J Appl Polym Sci 112:1882–1890 Hrdlicka Z, Cebria PMM, Stefan V, Kuta A (2016) Thermoplastic Elastomeric Blends Based on Waste Tires and Polyethylene: The Role of Rubber Particle Size. Prog Rubber Plast Re 32:129–142 Simon-Stőger L, Cs V (2021) PE-contaminated industrial waste ground tire rubber: How to transform a handicapped resource to a valuable one. Was Man 119:111–121 Stadler FJ, Takahashi T, Yonetake K (2009) Lattice sizes, crystallinities, and spacing between amorphous chains - characterization of ethene-/α-olefin copolymers with various comonomers and comonomer contents measured by wide angle X-ray scattering. e-Polymers 9:040 Khutia M, Joshi GM, Tambe P (2015) Quality factor of Melt blend processed polypropylene/poly (acrylonitrile-butadiene-styrene)/ conducting carbon black blends. Int J Plast Technol 19:381–387