A polynomial algorithm to find an independent set of maximum weight in a fork-free graph

Journal of Discrete Algorithms - Tập 6 Số 4 - Trang 595-604 - 2008
Vadim Lozin1, Martin Milanič2
1DIMAP & Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK#TAB#
2RUTCOR, Rutgers University, 640 Bartholomew Rd., Piscataway, NJ 08854-8003, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alekseev, 1983, On the local restrictions effect on the complexity of finding the graph independence number, 3

Alekseev, 2004, A polynomial algorithm for finding the largest independent sets in fork-free graphs, Discrete Appl. Math., 135, 3, 10.1016/S0166-218X(02)00290-1

Alexe, 2003, Struction revisited, Discrete Appl. Math., 132, 27, 10.1016/S0166-218X(03)00388-3

Alt, 1991, Computing a maximum cardinality matching in a bipartite graph in time O(n1.5m/logn), Inform. Process. Lett., 37, 237, 10.1016/0020-0190(91)90195-N

Balinski, 1991, Maximum matchings in bipartite graphs via strong spanning trees, Networks, 21, 165, 10.1002/net.3230210203

Berge, 1957, Two theorems in graph theory, Proc. Nat. Acad. Sci. USA, 43, 842, 10.1073/pnas.43.9.842

N. Blum, A new approach to maximum matching in general graphs, in: Lecture Notes in Computer Science, vol. 443, 1990, pp. 586–597

Brandstädt, 2003, Stability number of bull- and chair-free graphs revisited, Discrete Appl. Math., 131, 39, 10.1016/S0166-218X(02)00415-8

Brandstädt, 2004, On minimal prime extensions of a four-vertex graph in a prime graph, Discrete Math., 288, 9, 10.1016/j.disc.2004.06.019

Brandstädt, 2004, Efficient robust algorithms for the maximum weight stable set problem in chair-free graph classes, Inform. Process. Lett., 89, 165, 10.1016/j.ipl.2003.11.002

Brandstädt, 2003, Structure and stability number of chair-, co-P- and gem-free graphs revisited, Inform. Process. Lett., 86, 161, 10.1016/S0020-0190(02)00487-8

A. Brandstädt, C. Hoàng, On clique separators, nearly chordal graphs, and the maximum weight stable set problem, in: Proceedings IPCO 2005, Berlin, LNCS, vol. 3509, pp. 265–275

Cardoso, 2001, Convex quadratic programming approach to the maximum matching problem, J. Global Optim., 21, 91, 10.1023/A:1017969603632

Corneil, 1981, Complement reducible graphs, Discrete Appl. Math., 3, 163, 10.1016/0166-218X(81)90013-5

De Simone, 1993, Stability number of bull- and chair-free graphs, Discrete Appl. Math., 41, 121, 10.1016/0166-218X(93)90032-J

Edmonds, 1965, Path, trees, and flowers, Canadian J. Math., 17, 449, 10.4153/CJM-1965-045-4

Edmonds, 1965, Maximum matching and a polyhedron with 0,1-vertices, J. Res. Nat. Bur. Standards Sect. B 69B, 125, 10.6028/jres.069B.013

Ehrenfeucht, 1990, Primitivity is hereditary for 2-structures, Theoret. Comput. Sci., 70, 343, 10.1016/0304-3975(90)90131-Z

Farber, 1993, An upper bound on the number of cliques in a graph, Networks, 23, 207, 10.1002/net.3230230308

H.N. Gabow, Data structures for weighted matching and nearest common ancestors with linking, in: Proc. SODA '90, 1990, pp. 434-443

Gabow, 1991, Faster scaling algorithms for general graph matching problems, J. ACM, 38, 815, 10.1145/115234.115366

Gallai, 1967, Transitiv orientierbare graphen, Acta Math. Acad. Sci. Hungar., 18, 25, 10.1007/BF02020961

Habib, 1979, On the X-join decomposition for undirected graphs, Discrete Appl. Math., 1, 201, 10.1016/0166-218X(79)90043-X

Harary, 1969

Hammer, 1985, Stability in CAN-free graphs, J. Combin. Theory Ser. B, 38, 23, 10.1016/0095-8956(85)90089-9

Hammer, 1985, The struction of a graph: application to CN-free graphs, Combinatorica, 5, 141, 10.1007/BF02579377

Hopcroft, 1973, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput., 2, 225, 10.1137/0202019

Hertz, 1995, Polynomially solvable cases for the maximum stable set problem, Discrete Appl. Math., 60, 195, 10.1016/0166-218X(94)00051-E

Lovász, 1986, Matching Theory, vol. 29

Lozin, 2005, Independent sets in extensions of 2K2-free graphs, Discrete Appl. Math., 146, 74, 10.1016/j.dam.2004.07.006

McConnell, 1999, Modular decomposition and transitive orientation, Discrete Math., 201, 199, 10.1016/S0012-365X(98)00319-7

S. Micali, V.V. Vazirani, An O(|V||e|) algorithm for finding maximum matching in general graphs, in: Proceedings of the Twenty-First Annual IEEE Symposium on Foundations of Computer Science, 1980, pp. 17–27

Minty, 1980, On maximal independent sets of vertices in claw-free graphs, J. Combin. Theory Ser. B, 28, 284, 10.1016/0095-8956(80)90074-X

Möhring, 1985, Algorithmic aspects of comparability graphs and interval graphs, 41

Möhring, 1984, Substitution decomposition for discrete structures and connections with combinatorial optimization, vol. 95, 257

M. Mucha, P. Sankowski, Maximum matchings via Gaussian elimination, in: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, 2004, pp. 248–255

Nakamura, 2001, A revision of Minty's algorithm for finding a maximum weight stable set of a claw-free graph, J. Oper. Res. Soc. Japan, 44, 194

Poljak, 1974, A note on stable sets and coloring of graphs, Comment. Math. Univ. Carolinae, 15, 307

Sbihi, 1980, Algorithme de recherche d'un stable de cardinalité maximum dans un graphe sans étoile, Discrete Math., 29, 53, 10.1016/0012-365X(90)90287-R

Schrijver, 2003, Combinatorial Optimization, Polyhedra and Efficiency, vol. 24, 1208

Vazirani, 1994, A theory of alternating paths and blossoms for proving correctness of the O(VE) general graph maximum matching algorithm, Combinatorica, 14, 71, 10.1007/BF01305952