A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries

Energy Storage Materials - Tập 45 - Trang 941-951 - 2022
Jaegeon Ryu1, Dong-Yeob Han2, Dongki Hong3, Soojin Park1
1Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
2Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
3Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

Tài liệu tham khảo

Albertus, 2018, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16, 10.1038/s41560-017-0047-2 Harlow, 2019, A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies, J. Electrochem. Soc., 166, A3031, 10.1149/2.0981913jes Choi, 2020, Revisiting classical rocking chair lithium-ion battery, Macromol. Res., 28, 1175, 10.1007/s13233-020-8175-0 Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: A review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115 Xiao, 2019, How lithium dendrites form in liquid batteries, Science, 366, 426, 10.1126/science.aay8672 Ryu, 2020, A game changer: Functional nano/micromaterials for smart rechargeable batteries, Adv. Funct. Mater., 30, 10.1002/adfm.201902499 Xu, 2019, Artificial interphases for highly stable lithium metal anode, Matter, 1, 317, 10.1016/j.matt.2019.05.016 Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16 Shi, 2020, A review of composite lithium metal anode for practical applications, Adv. Mater. Technol., 5 Zhang, 2020, Towards practical lithium-metal anodes, Chem. Soc. Rev., 49, 3040, 10.1039/C9CS00838A Qin, 2021, Strategies in structure and electrolyte design for high-performance lithium metal batteries, Adv. Funct. Mater., 31, 10.1002/adfm.202009694 Wang, 2021, Advanced electrolyte design for stable lithium metal anode: From liquid to solid, Nano Energy, 80, 10.1016/j.nanoen.2020.105516 Cao, 2021, Review—localized high-concentration electrolytes for lithium batteries, J. Electrochem. Soc., 168, 10.1149/1945-7111/abd60e Lee, 2017, Suppressing lithium dendrite growth by metallic coating on a separator, Adv. Funct. Mater., 27, 10.1002/adfm.201704391 Liu, 2019, Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites, Energy Storage Mater., 19, 24, 10.1016/j.ensm.2018.10.015 Liu, 2019, Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes, ACS Appl. Mater. Interfaces, 11, 17843, 10.1021/acsami.9b04122 Liu, 2017, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nat. Energy, 2, 17083, 10.1038/nenergy.2017.83 Yu, 2020, Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries, Chem. Eng. J., 399, 10.1016/j.cej.2020.125837 Li, 2019, Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes, Nat. Commun., 10, 1363, 10.1038/s41467-019-09211-z Song, 2019, A nacre-inspired separator coating for impact-tolerant lithium batteries, Adv. Mater., 31, 10.1002/adma.201905711 Li, 2019, A functional SrF2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode, J. Mater. Chem. A, 7, 21349, 10.1039/C9TA06908A Zhao, 2018, An ion redistributor for dendrite-free lithium metal anodes, Sci. Adv., 4, eaat3446, 10.1126/sciadv.aat3446 Liang, 2020, A nano-shield design for separators to resist dendrite formation in lithium-metal batteries, Angew. Chem. Int. Ed, 59, 6561, 10.1002/anie.201915440 Shen, 2020, Tuning the interfacial electronic conductivity by artificial electron tunneling barriers for practical lithium metal batteries, Nano. Lett., 20, 6606, 10.1021/acs.nanolett.0c02371 Li, 2021, In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes, Adv. Mater., 2100793 Kim, 2019, Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer toward ultrastable and high-rate lithium metal anodes, ACS Appl. Mater. Interfaces, 11, 3917, 10.1021/acsami.8b18660 Liu, 2020, In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries, Energy Storage Mater., 30, 27, 10.1016/j.ensm.2020.04.043 Li, 2021, Elevated lithium ion regulation by a “Natural Silk” modified separator for high-performance lithium metal anode, Adv. Funct. Mater., 31, 10.1002/adfm.202100537 Woo, 2021, High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes, Energy Environ. Sci., 14, 1420, 10.1039/D0EE03967E Zhao, 2021, A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries, Chem. Eng. J., 404, 10.1016/j.cej.2020.126542 Zuo, 2021, Highly thermal conductive separator with in-built phosphorus stabilizer for superior Ni-rich cathode based lithium metal batteries, Adv. Energy Mater., 11, 10.1002/aenm.202003285 Yang, 2020, Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes, J. Mater. Chem. A, 8, 5095, 10.1039/C9TA13778E Gonzalez, 2020, Draining over blocking: Nano-composite janus separators for mitigating internal shorting of lithium batteries, Adv. Mater., 32, 10.1002/adma.201906836 Du, 2019, Bendable network built with ultralong silica nanowires as a stable separator for high-safety and high-power lithium-metal batteries, ACS Appl. Mater. Interfaces, 11, 34895, 10.1021/acsami.9b09722 Kim, 2017, Hierarchical chitin fibers with aligned nanofibrillar architectures: A nonwoven-mat separator for lithium metal batteries, ACS Nano, 11, 6114, 10.1021/acsnano.7b02085 Shin, 2019, Metamorphosis of seaweeds into multitalented materials for energy storage applications, Adv. Energy Mater., 9 Hu, 2020, Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries, Chem. Eng. J., 388, 10.1016/j.cej.2020.124258 Hwang, 2020, A three-dimensional nano-web scaffold of ferroelectric beta-PVDF fibers for lithium metal plating and stripping, ACS Appl. Mater. Interfaces, 12, 29235 Luo, 2018, High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes, Adv. Energy Mater., 8 Ryou, 2012, Excellent cycle life of lithium-metal anodes in lithium-ion batteries with Mussel-inspired polydopamine-coated separators, Adv. Energy Mater., 2, 645, 10.1002/aenm.201100687 Lee, 2018, Detrimental effects of chemical crossover from the lithium anode to cathode in rechargeable lithium metal batteries, ACS Energy Lett., 3, 2921, 10.1021/acsenergylett.8b01819 Oh, 2019, Polydopamine-treated three-dimensional carbon fiber-coated separator for achieving high-performance lithium metal batteries, J. Power Sources, 430, 130, 10.1016/j.jpowsour.2019.05.003 He, 2019, Polydopamine coating layer modified current collector for dendrite-free Li metal anode, Energy Storage Mater., 23, 418, 10.1016/j.ensm.2019.04.026 Jiang, 2020, Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes, Energy Storage Mater., 29, 84, 10.1016/j.ensm.2020.04.006 Kim, 2018, High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer, Adv. Energy Mater., 8 Li, 2019, A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries, J. Power Sources, 443, 10.1016/j.jpowsour.2019.227262 Xiang, 2016, Chelation competition induced polymerization (CCIP): construction of integrated hollow polydopamine nanocontainers with tailorable functionalities, Chem. Commun., 52, 10155, 10.1039/C6CC05489G Huang, 2020, Functionalized separator for next-generation batteries, Mater. Today, 41, 143, 10.1016/j.mattod.2020.07.015 Lagadec, 2019, Characterization and performance evaluation of lithium-ion battery separators, Nat. Energy, 4, 16, 10.1038/s41560-018-0295-9 d’Ischia, 2009, Chemical and structural diversity in Eumelanins: Unexplored bio-optoelectronic materials, Angew. Chem. Int. Ed, 48, 3914, 10.1002/anie.200803786 Yuan, 2017, Strategies to increase the thermal stability of truly biomimetic hydrogels: Combining hydrophobicity and directed hydrogen bonding, Macromolecules, 50, 9058, 10.1021/acs.macromol.7b01832 Fu, 2015, Piezoresponse force microscopy study on ferroelectric polarization of ferroelectric polymer thin films with various structural configurations, AIP Adv., 5, 10.1063/1.4931998 Man, 2014, Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide), J. Mater. Chem. A, 2, 11980, 10.1039/C4TA01870B Park, 2016, Mussel-inspired polydopamine coating for enhanced thermal stability and rate performance of graphite anodes in Li-ion batteries, ACS Appl. Mater. Interfaces, 8, 13973, 10.1021/acsami.6b04109 Djian, 2007, Lithium-ion batteries with high charge rate capacity: Influence of the porous separator, J. Power Sources, 172, 416, 10.1016/j.jpowsour.2007.07.018 Huo, 2020, Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries, Energy Storage Mater., 29, 361, 10.1016/j.ensm.2019.12.022 Guan, 2018, Controlling nucleation in lithium metal anodes, Small, 14, 10.1002/smll.201801423 Xiao, 2020, Understanding and applying coulombic efficiency in lithium metal batteries, Nat. Energy, 5, 561, 10.1038/s41560-020-0648-z Kim, 2021, Vinyl-integrated in situ cross-linked composite gel electrolytes for stable lithium metal anodes, ACS Appl. Energy Mater., 4, 2922, 10.1021/acsaem.1c00327 Li, 2020, High-nickel layered oxide cathodes for lithium-based automotive batteries, Nat. Energy, 5, 26, 10.1038/s41560-019-0513-0 Lu, 2014, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13, 961, 10.1038/nmat4041 Heiskanen, 2019, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries, Joule, 3, 2322, 10.1016/j.joule.2019.08.018 Mussa, 2018, Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells, J. Power Sources, 385, 18, 10.1016/j.jpowsour.2018.03.020