A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries
Tài liệu tham khảo
Albertus, 2018, Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries, Nat. Energy, 3, 16, 10.1038/s41560-017-0047-2
Harlow, 2019, A wide range of testing results on an excellent lithium-ion cell chemistry to be used as benchmarks for new battery technologies, J. Electrochem. Soc., 166, A3031, 10.1149/2.0981913jes
Choi, 2020, Revisiting classical rocking chair lithium-ion battery, Macromol. Res., 28, 1175, 10.1007/s13233-020-8175-0
Cheng, 2017, Toward safe lithium metal anode in rechargeable batteries: A review, Chem. Rev., 117, 10403, 10.1021/acs.chemrev.7b00115
Xiao, 2019, How lithium dendrites form in liquid batteries, Science, 366, 426, 10.1126/science.aay8672
Ryu, 2020, A game changer: Functional nano/micromaterials for smart rechargeable batteries, Adv. Funct. Mater., 30, 10.1002/adfm.201902499
Xu, 2019, Artificial interphases for highly stable lithium metal anode, Matter, 1, 317, 10.1016/j.matt.2019.05.016
Lin, 2017, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol., 12, 194, 10.1038/nnano.2017.16
Shi, 2020, A review of composite lithium metal anode for practical applications, Adv. Mater. Technol., 5
Zhang, 2020, Towards practical lithium-metal anodes, Chem. Soc. Rev., 49, 3040, 10.1039/C9CS00838A
Qin, 2021, Strategies in structure and electrolyte design for high-performance lithium metal batteries, Adv. Funct. Mater., 31, 10.1002/adfm.202009694
Wang, 2021, Advanced electrolyte design for stable lithium metal anode: From liquid to solid, Nano Energy, 80, 10.1016/j.nanoen.2020.105516
Cao, 2021, Review—localized high-concentration electrolytes for lithium batteries, J. Electrochem. Soc., 168, 10.1149/1945-7111/abd60e
Lee, 2017, Suppressing lithium dendrite growth by metallic coating on a separator, Adv. Funct. Mater., 27, 10.1002/adfm.201704391
Liu, 2019, Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites, Energy Storage Mater., 19, 24, 10.1016/j.ensm.2018.10.015
Liu, 2019, Silver nanoparticle-doped 3D porous carbon nanofibers as separator coating for stable lithium metal anodes, ACS Appl. Mater. Interfaces, 11, 17843, 10.1021/acsami.9b04122
Liu, 2017, Making Li-metal electrodes rechargeable by controlling the dendrite growth direction, Nat. Energy, 2, 17083, 10.1038/nenergy.2017.83
Yu, 2020, Mo2C quantum dots@graphene functionalized separator toward high-current-density lithium metal anodes for ultrastable Li-S batteries, Chem. Eng. J., 399, 10.1016/j.cej.2020.125837
Li, 2019, Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes, Nat. Commun., 10, 1363, 10.1038/s41467-019-09211-z
Song, 2019, A nacre-inspired separator coating for impact-tolerant lithium batteries, Adv. Mater., 31, 10.1002/adma.201905711
Li, 2019, A functional SrF2 coated separator enabling a robust and dendrite-free solid electrolyte interphase on a lithium metal anode, J. Mater. Chem. A, 7, 21349, 10.1039/C9TA06908A
Zhao, 2018, An ion redistributor for dendrite-free lithium metal anodes, Sci. Adv., 4, eaat3446, 10.1126/sciadv.aat3446
Liang, 2020, A nano-shield design for separators to resist dendrite formation in lithium-metal batteries, Angew. Chem. Int. Ed, 59, 6561, 10.1002/anie.201915440
Shen, 2020, Tuning the interfacial electronic conductivity by artificial electron tunneling barriers for practical lithium metal batteries, Nano. Lett., 20, 6606, 10.1021/acs.nanolett.0c02371
Li, 2021, In situ chemical lithiation transforms diamond-like carbon into an ultrastrong ion conductor for dendrite-free lithium-metal anodes, Adv. Mater., 2100793
Kim, 2019, Surface functionalization of a conventional polypropylene separator with an aluminum nitride layer toward ultrastable and high-rate lithium metal anodes, ACS Appl. Mater. Interfaces, 11, 3917, 10.1021/acsami.8b18660
Liu, 2020, In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries, Energy Storage Mater., 30, 27, 10.1016/j.ensm.2020.04.043
Li, 2021, Elevated lithium ion regulation by a “Natural Silk” modified separator for high-performance lithium metal anode, Adv. Funct. Mater., 31, 10.1002/adfm.202100537
Woo, 2021, High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes, Energy Environ. Sci., 14, 1420, 10.1039/D0EE03967E
Zhao, 2021, A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries, Chem. Eng. J., 404, 10.1016/j.cej.2020.126542
Zuo, 2021, Highly thermal conductive separator with in-built phosphorus stabilizer for superior Ni-rich cathode based lithium metal batteries, Adv. Energy Mater., 11, 10.1002/aenm.202003285
Yang, 2020, Advanced nanoporous separators for stable lithium metal electrodeposition at ultra-high current densities in liquid electrolytes, J. Mater. Chem. A, 8, 5095, 10.1039/C9TA13778E
Gonzalez, 2020, Draining over blocking: Nano-composite janus separators for mitigating internal shorting of lithium batteries, Adv. Mater., 32, 10.1002/adma.201906836
Du, 2019, Bendable network built with ultralong silica nanowires as a stable separator for high-safety and high-power lithium-metal batteries, ACS Appl. Mater. Interfaces, 11, 34895, 10.1021/acsami.9b09722
Kim, 2017, Hierarchical chitin fibers with aligned nanofibrillar architectures: A nonwoven-mat separator for lithium metal batteries, ACS Nano, 11, 6114, 10.1021/acsnano.7b02085
Shin, 2019, Metamorphosis of seaweeds into multitalented materials for energy storage applications, Adv. Energy Mater., 9
Hu, 2020, Grafting polyethyleneimine on electrospun nanofiber separator to stabilize lithium metal anode for lithium sulfur batteries, Chem. Eng. J., 388, 10.1016/j.cej.2020.124258
Hwang, 2020, A three-dimensional nano-web scaffold of ferroelectric beta-PVDF fibers for lithium metal plating and stripping, ACS Appl. Mater. Interfaces, 12, 29235
Luo, 2018, High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes, Adv. Energy Mater., 8
Ryou, 2012, Excellent cycle life of lithium-metal anodes in lithium-ion batteries with Mussel-inspired polydopamine-coated separators, Adv. Energy Mater., 2, 645, 10.1002/aenm.201100687
Lee, 2018, Detrimental effects of chemical crossover from the lithium anode to cathode in rechargeable lithium metal batteries, ACS Energy Lett., 3, 2921, 10.1021/acsenergylett.8b01819
Oh, 2019, Polydopamine-treated three-dimensional carbon fiber-coated separator for achieving high-performance lithium metal batteries, J. Power Sources, 430, 130, 10.1016/j.jpowsour.2019.05.003
He, 2019, Polydopamine coating layer modified current collector for dendrite-free Li metal anode, Energy Storage Mater., 23, 418, 10.1016/j.ensm.2019.04.026
Jiang, 2020, Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes, Energy Storage Mater., 29, 84, 10.1016/j.ensm.2020.04.006
Kim, 2018, High performance lithium metal batteries enabled by surface tailoring of polypropylene separator with a polydopamine/graphene layer, Adv. Energy Mater., 8
Li, 2019, A review of electrospun nanofiber-based separators for rechargeable lithium-ion batteries, J. Power Sources, 443, 10.1016/j.jpowsour.2019.227262
Xiang, 2016, Chelation competition induced polymerization (CCIP): construction of integrated hollow polydopamine nanocontainers with tailorable functionalities, Chem. Commun., 52, 10155, 10.1039/C6CC05489G
Huang, 2020, Functionalized separator for next-generation batteries, Mater. Today, 41, 143, 10.1016/j.mattod.2020.07.015
Lagadec, 2019, Characterization and performance evaluation of lithium-ion battery separators, Nat. Energy, 4, 16, 10.1038/s41560-018-0295-9
d’Ischia, 2009, Chemical and structural diversity in Eumelanins: Unexplored bio-optoelectronic materials, Angew. Chem. Int. Ed, 48, 3914, 10.1002/anie.200803786
Yuan, 2017, Strategies to increase the thermal stability of truly biomimetic hydrogels: Combining hydrophobicity and directed hydrogen bonding, Macromolecules, 50, 9058, 10.1021/acs.macromol.7b01832
Fu, 2015, Piezoresponse force microscopy study on ferroelectric polarization of ferroelectric polymer thin films with various structural configurations, AIP Adv., 5, 10.1063/1.4931998
Man, 2014, Enhanced wetting properties of a polypropylene separator for a lithium-ion battery by hyperthermal hydrogen induced cross-linking of poly(ethylene oxide), J. Mater. Chem. A, 2, 11980, 10.1039/C4TA01870B
Park, 2016, Mussel-inspired polydopamine coating for enhanced thermal stability and rate performance of graphite anodes in Li-ion batteries, ACS Appl. Mater. Interfaces, 8, 13973, 10.1021/acsami.6b04109
Djian, 2007, Lithium-ion batteries with high charge rate capacity: Influence of the porous separator, J. Power Sources, 172, 416, 10.1016/j.jpowsour.2007.07.018
Huo, 2020, Bifunctional composite separator with a solid-state-battery strategy for dendrite-free lithium metal batteries, Energy Storage Mater., 29, 361, 10.1016/j.ensm.2019.12.022
Guan, 2018, Controlling nucleation in lithium metal anodes, Small, 14, 10.1002/smll.201801423
Xiao, 2020, Understanding and applying coulombic efficiency in lithium metal batteries, Nat. Energy, 5, 561, 10.1038/s41560-020-0648-z
Kim, 2021, Vinyl-integrated in situ cross-linked composite gel electrolytes for stable lithium metal anodes, ACS Appl. Energy Mater., 4, 2922, 10.1021/acsaem.1c00327
Li, 2020, High-nickel layered oxide cathodes for lithium-based automotive batteries, Nat. Energy, 5, 26, 10.1038/s41560-019-0513-0
Lu, 2014, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater., 13, 961, 10.1038/nmat4041
Heiskanen, 2019, Generation and evolution of the solid electrolyte interphase of lithium-ion batteries, Joule, 3, 2322, 10.1016/j.joule.2019.08.018
Mussa, 2018, Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells, J. Power Sources, 385, 18, 10.1016/j.jpowsour.2018.03.020