A phenomenological constitutive model for predicting both the moderate and large deformation behavior of elastomeric materials
Tài liệu tham khảo
Alexander, 1968, A constitutive relation for rubber-like materials, Int. J. Eng. Sci., 6, 549, 10.1016/0020-7225(68)90006-2
Anssari-Benam, 2021, A generalised neo-Hookean strain energy function for application to the finite deformation of elastomers, Int. J. Non Lin. Mech., 128, 103626, 10.1016/j.ijnonlinmec.2020.103626
Anssari-Benam, 2021, On the central role of the invariant I2 in nonlinear elasticity, Int. J. Eng. Sci., 163, 103486, 10.1016/j.ijengsci.2021.103486
Arruda, 1993, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solid., 4, 389, 10.1016/0022-5096(93)90013-6
Bahreman, 2016, Constitutive modeling of isotropic hyperelastic materials using proposed phenomenological models in terms of strain invariants, Polym. Eng. Sci., 56, 299, 10.1002/pen.24255
Bergström, 2015
Betchewe, 2020, A phenomenological expression of strain energy in large elastic deformations of isotropic materials, Iran. Polym. J. (Engl. Ed.), 29, 525, 10.1007/s13726-020-00816-6
Biderman, 1958, Calculation of rubber parts (in Russian), Rascheti na prochnost, 40
Bischoff, 2001, A new constitutive model for the compressibility of elastomers at finite deformations, Rubber Chem. Technol., 74, 541, 10.5254/1.3544956
Carroll, 2011, A strain energy function for vulcanized rubbers, J. Elasticity, 103, 173, 10.1007/s10659-010-9279-0
Dal, 2021
Destrade, 2017, Methodical fitting for mathematical models of rubber-like materials, Proc. R. Soc. A., 473, 20160811, 10.1098/rspa.2016.0811
Doll, 2000, On the development of volumetric strain energy functions, J. Appl. Mech., 67, 17, 10.1115/1.321146
Francisco Lalo, 2019, Numerical modeling and experimental characterization of elastomeric pads bonded in a conical spring under multiaxial loads and pre-compression, 5182629
Gent, 1958, Forms for the stored (strain) energy function for vulcanized rubber, J. Polym. Sci., 28, 625, 10.1002/pol.1958.1202811814
Gornet, 2012, A new isotropic hyperelastic strain energy function in terms of invariants and its derivation into a pseudo-elastic model for Mullins effect: application to finite element analysis, 265
Horgan, 2007, Constitutive models for almost incompressible isotropic elastic rubber-like materials, J. Elasticity, 87, 133, 10.1007/s10659-007-9100-x
Horgan, 2009, On the volumetric part of strain-energy functions used in the constitutive modeling of slightly compressible solid rubbers, Int. J. Solid Struct., 46, 3078, 10.1016/j.ijsolstr.2009.04.007
Kaliske, 1999, An extended tube-model for rubber elasticity: statistical-mechanical theory and finite element implementation, Rubber Chem. Technol., 72, 602, 10.5254/1.3538822
Kawabata, 1981, Experimental survey of the strain energy density function of isoprene rubber vulcanizate, Macromolecules, 14, 154, 10.1021/ma50002a032
Khajehsaeid, 2013, A hyperelastic constitutive model for rubber-like materials, Eur. J. Mech. Solid., 38, 144, 10.1016/j.euromechsol.2012.09.010
Levenberg, 1944, A method for the solution of certain non-linear problems in least squares, Q. Appl. Math., 2, 164, 10.1090/qam/10666
Melly, 2021, Improved Carroll's hyperelastic model considering compressibility and its finite element implementation, Acta Mech. Sin., 10.1007/s10409-021-01064-4
Marquardt, 1963, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11, 431, 10.1137/0111030
Mooney, 1940, A theory of large elastic deformation, J. Appl. Phys., 11, 582, 10.1063/1.1712836
Muhr, 2005, Modeling the stress-strain behavior of rubber, Rubber Chem. Technol., 78, 391, 10.5254/1.3547890
Murphy, 2018, Modelling slight compressibility for hyperelastic anisotropic materials, J. Elasticity, 131, 171, 10.1007/s10659-017-9650-5
Paul, 2012, Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar's data, Arch. Appl. Mech., 82, 1183, 10.1007/s00419-012-0610-z
Ogden, 1972, Large deformation isotropic elasticity — on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. A, 326, 565, 10.1098/rspa.1972.0026
Rivlin, 1948, Large elastic deformations of isotropic materials. IV. Further developments of the general theory, Phil. Trans. Roy. Soc. Lond., 241, 379, 10.1098/rsta.1948.0024
Rivlin, 1951, Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber, Phil. Trans. Roy. Soc. Lond. Math. Phys. Sci., 243, 251, 10.1098/rsta.1951.0004
Treloar, 1944, Stress-strain data for vulcanized rubber under various types of deformation, Rubber Chem. Technol., 17, 813, 10.5254/1.3546701
Treloar, 1975
Upadhyay, 2019, Thermodynamics-based stability criteria for constitutive equations of isotropic hyperelastic solids, J. Mech. Phys. Solid., 124, 115, 10.1016/j.jmps.2018.09.038
Upadhyay, 2020, Hyperelastic constitutive modeling of hydrogels based on primary deformation modes and validation under 3D stress states, Int. J. Eng. Sci., 103314, 154
Upadhyay, 2020, Visco-hyperelastic constitutive modeling of strain rate sensitive soft materials, J. Mech. Phys. Solid., 135, 103777, 10.1016/j.jmps.2019.103777
Xiang, 2018, A general constitutive model of soft elastomers, J. Mech. Phys. Solid., 117, 110, 10.1016/j.jmps.2018.04.016
Yeoh, 1993, Some forms of the strain energy function for rubber, Rubber Chem. Technol., 66, 754, 10.5254/1.3538343