A phase-field description of dynamic brittle fracture
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosio, 1990, Approximation of functional depending on jumps by elliptic functional via Γ-convergence, Commun. Pure Appl. Math., 43, 999, 10.1002/cpa.3160430805
Ambrosio, 1992, On the approximation of free discontinuity problems, Boll. Un. Mat. Ital. B (7), 6, 105
Amor, 2009, Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, 57, 1209, 10.1016/j.jmps.2009.04.011
Babuška, 1997, The partition of unity method, Int. J. Numer. Methods Engrg., 40, 727, 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
Bellettini, 1994, Discrete approximation of a free discontinuity problem, Numer. Funct. Anal. Optim., 15, 201, 10.1080/01630569408816562
Belytschko, 2003, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment, Int. J. Numer. Methods Eng., 58, 1873, 10.1002/nme.941
Benallal, 2007, Bifurcation and stability issues in gradient theories with softening, Modell. Simul. Mater. Sci. Engrg., 15, S283, 10.1088/0965-0393/15/1/S22
Benson, 1998, Stable time step estimation for multi-material eulerian hydrocodes, Comput. Methods Appl. Mech. Engrg., 167, 191, 10.1016/S0045-7825(98)00119-4
Benson, 2011, A large deformation, rotation-free, isogeometric shell, Comput. Methods Appl. Mech. Engrg., 200, 1367, 10.1016/j.cma.2010.12.003
Borden, 2011, Isogeometric finite element data structures based on Bézier extraction of NURBS, Int. J. Numer. Methods Engrg., 87, 15, 10.1002/nme.2968
Bourdin, 1999, Image segmentation with a finite element method, M2AN Math. Modell. Numer. Anal., 33, 229, 10.1051/m2an:1999114
Bourdin, 2007, Numerical implementation of the variational formulation for quasi-static brittle fracture, Interf. Free Bound., 9, 411, 10.4171/IFB/171
Bourdin, 2000, Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, 48, 797, 10.1016/S0022-5096(99)00028-9
Bourdin, 2011, A time-discrete model for dynamic fracture based on crack regularization, Int. J. Fract., 168, 133, 10.1007/s10704-010-9562-x
Braides, 1998
Burke, 2010, An adaptive finite element approximation of a variational model of brittle fracture, SIAM J. Numer. Anal., 48, 980, 10.1137/080741033
Chung, 1993, A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method, J. Appl. Mech., 60, 371, 10.1115/1.2900803
Del Piero, 2007, A variational model for fracture mechanics: numerical experiments, J. Mech. Phys. Solids, 55, 2513, 10.1016/j.jmps.2007.04.011
Francfort, 2009, Critical points of Ambrosio–Tortorelli converge to critical points of Mumford–Shah in the one-dimensional Dirichlet case, ESAIM: Control Optim. Calc. Var., 15, 576
Francfort, 1998, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46, 1319, 10.1016/S0022-5096(98)00034-9
Giacomini, 2005, Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures, Calc. Var. Partial Diff. Equat., 22, 129, 10.1007/s00526-004-0269-6
Hilber, 1977, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Engrg. Struct. Dyn., 5, 283, 10.1002/eqe.4290050306
Hughes, 2000
Hughes, 2005, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135, 10.1016/j.cma.2004.10.008
Hughes, 2008, Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Engrg., 197, 4104, 10.1016/j.cma.2008.04.006
Hughes, 2010, Efficient quadrature for NURBS-based isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 199, 301, 10.1016/j.cma.2008.12.004
Hulbert, 1996, Explicit time integration algorithms for structural dynamics with optimal numerical dissipation, Comput. Methods Appl. Mech. Engrg., 137, 175, 10.1016/S0045-7825(96)01036-5
Kalthoff, 2000, Modes of dynamic shear failure in solids, Int. J. Fract., 101, 1, 10.1023/A:1007647800529
J.F. Kalthoff, S. Winkler. Failure mode transition of high rates of shear loading, in: C.Y. Chiem, H.D. Kunze, L.W. Meyer, (Eds.), Proceedings of the International Conference on Impact Loading and Dynamic Behavior of Materials, vol. 1, 1987, pp. 185–195.
Karma, 2001, Phase-field model of mode III dynamic fracture, Phys. Rev. Lett., 87, 045501, 10.1103/PhysRevLett.87.045501
Krueger, 2004, Virtual crack closure technique: history, approach, and applications, Appl. Mech. Rev., 57, 109, 10.1115/1.1595677
Lancioni, 2009, The variational approach to fracture mechanics. a practical application to the French Panthéon in Paris, J. Elast., 95, 1, 10.1007/s10659-009-9189-1
Larsen, 2010, Models for dynamic fracture based on griffith’s criterion, vol. 21, 131
Larsen, 2010, Existence of solutions to a regularized model of dynamic fracture, Math. Methods Models Appl. Sci., 20, 1021, 10.1142/S0218202510004520
Li, 2012, On linear independence of T-splines blending functions, Comput. Aided Geometric Des., 29, 63, 10.1016/j.cagd.2011.08.005
Miehe, 2010, A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits, Comput. Methods Appl. Mech. Engrg., 199, 2765, 10.1016/j.cma.2010.04.011
Miehe, 2010, Thermodynamically consistent phase-field models of fracture: variational principles and multi-field fe implementations, Int. J. Numer. Methods Engrg., 83, 1273, 10.1002/nme.2861
Miranda, 1989, An improved implicit-explicit time integration method for structural dynamics, Earthquake Engrg. Struct. Dyn., 18, 643, 10.1002/eqe.4290180505
Moës, 1999, A finite element method for crack growth without remeshing, Int. J. Numer. Methods Engrg., 46, 131, 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
Mumford, 1989, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pure Appl. Math., 42, 577, 10.1002/cpa.3160420503
Pham, 2011, Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., 20, 618, 10.1177/1056789510386852
Pham, 2009, Construction and analysis of localized responses for gradient damage models in a 1d setting, Vietnam J. Mech., 31, 233, 10.15625/0866-7136/31/3-4/5651
Ravi-Chandar, 1998, Dynamic fracture of nominally brittle materials, Int. J. Fract., 90, 83, 10.1023/A:1007432017290
Ravi-Chandar, 1984, An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching, Int. J. Fract., 26, 141, 10.1007/BF01157550
Ravi-Chandar, 2000, Failure mode transitions in polymers under high strain rate loading, Int. J. Fract., 101, 33, 10.1023/A:1007581101315
Remmers, 2008, The simulation of dynamic crack propagation using the cohesive segments method, J. Mech. Phys. Solids, 56, 70, 10.1016/j.jmps.2007.08.003
Scott, 2011, Isogeometric finite element data structures based on Bézier extraction of T-splines, Int. J. Numer. Methods Engrg., 88, 126, 10.1002/nme.3167
Scott, 2012, Local refinement of analysis-suitable T-splines, Comput. Methods Appl. Mech. Engrg., 213–216, 206, 10.1016/j.cma.2011.11.022
Song, 2008, A comparative study on finite element methods for dynamic fracture, Comput. Mech., 42, 239, 10.1007/s00466-007-0210-x
Verhoosel, 2011, An isogeometric approach to cohesive zone modeling, Int. J. Numer. Methods Engrg., 88, 336, 10.1002/nme.3061