Một góc nhìn về tính toán toán học biểu tượng và trí tuệ nhân tạo

Springer Science and Business Media LLC - Tập 19 - Trang 261-277 - 1997
J. Calmet1, J.A. Campbell2
1Institut für Algorithmen und Kognitive Systeme, UniversitÄt Karlsruhe, Karlsruhe, Germany
2Department of Computer Science, University College London, London, UK

Tóm tắt

Bài báo này xem xét bản chất và lịch sử của lĩnh vực nghiên cứu chung giữa trí tuệ nhân tạo và tính toán toán học biểu tượng, với sự tham chiếu đặc biệt đến các chủ đề hiện đang có lượng hoạt động cao nhất hoặc tiềm năng phát triển trong tương lai: môi trường tính toán dựa trên kiến thức toán học, các tác nhân tự động và hệ thống đa tác nhân, việc chuyển đổi mô tả vấn đề trong các logic thành các hình thức đại số, khai thác học máy, lý luận định tính, và lập trình dựa trên ràng buộc. Việc đại diện kiến thức cho kiến thức toán học được xác định là một trọng tâm chính cho nhiều công việc nghiên cứu này. Một số chủ đề tiềm năng đáng chú ý cho nghiên cứu thêm được nêu ra.

Từ khóa

#trí tuệ nhân tạo #tính toán biểu tượng #môi trường tính toán dựa trên kiến thức #tác nhân tự động #hệ thống đa tác nhân #học máy #lý luận định tính #lập trình dựa trên ràng buộc #đại diện kiến thức

Tài liệu tham khảo

J. Calmet and J.A. Campbell, Artificial Intelligence and symbolic mathematical computations, in: Artificial Intelligence and Symbolic Mathematical Computing, eds. J. Calmet and J.A. Campbell, LNCS 737 (Springer-Verlag, Berlin, 1993) p. 1.

A. Deprit, J. Henrard and A. Rom, Science 168 (1970) 1569.

J.A. Campbell and A.C. Hearn, J. Comput. Phys. 5 (1970) 280.

P. McCorduck, Machines who Think (Freeman, San Francisco, 1979).

H.G. Kahrimanian, Analytical differentiation by a digital computer, M.S. Thesis, Temple University, Philadelphia (1953).

J. Nolan, Analytical differentiation on a digital computer, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MA (1953).

R. Slagle, A heuristic program that solves symbolic integration problems in freshman calculus, in: Computers and Thought, eds. E.A. Feigenbaum and J. Feldman (McGraw-Hill, New York, 1963).

J. Moses, Comm. ACM 14 (1971) 548.

R.H. Risch, Trans. Amer. Math. Soc. 139 (1969) 167.

D.L. Waltz, Understanding line drawings of scenes with shadows, in: The Psychology of Computer Vision, ed. P.H. Winston (McGraw-Hill, New York, 1975) p. 19.

J. Illingworth and J. Kittler, Comp. Vision, Graphics and Image Proc. 44 (1988) 87.

R. Brachman and H. Levesque (eds.), Readings in Knowledge Representation (Morgan Kaufmann, Los Altos, CA, 1985).

G. Ringland and D.A. Duce (eds.), Approaches to Knowledge Representation (Science Research Associates/Wiley, Chichester, England, 1986).

M. Vivet, Expertise mathématique: CAMELIA, un logiciel pour raisonner et calculer, Thèse d'Etat, Université de Paris IV, Paris (1984).

B. Silver, Meta-Level Inference (Elsevier, Amsterdam, 1986).

D.B. Lenat and S.V. Guha, Building Large Knowledge-Based Systems (Addison-Wesley, Reading, MA, 1990).

R.D. Jenks and R.S. Sutor, AXIOM (Springer-Verlag, Berlin, 1992).

J. Calmet and I.A. Tjandra, A unified algebra-based specification language for symbolic computing, in: Design and Implementation of Symbolic Computation Systems, ed. A. Miola, LNCS 722 (Springer-Verlag, Berlin, 1993) p. 122.

G. Bittencourt, J. Calmet, K. Homann and A. Lulay, MANTRA: A multi-level knowledge representation system, in: Proc. 11th Brazilian Symposium on Artificial Intelligence (SBIA '94), eds. T. Pequeno and F. Carvalho (1994) p. 493.

J. Hadamard, The Psychology of Invention in the Mathematical Field (Princeton University Press, Princeton, NJ, 1949).

G. Polya, Mathematics and Plausible Reasoning, 2 vols (Princeton University Press, Princeton, NJ, 1954).

J. Kolodner, Case-Based Reasoning (Morgan Kaufmann, San Mateo, CA, 1994).

T. Sandholm and V. Lesser, Advantages of a leveled commitment contracting protocol, Artificial Intelligence, to be published.

J. Pfalzgraf, U.C. Sigmund and K. Stokkermans, Modeling cooperating agents scenarios by deductive planning methods and logical fiberings, in: Integrating Symbolic Mathematical Computation and Artificial Intelligence, eds. J. Calmet and J.A. Campbell, LNCS 958 (Springer-Verlag, Berlin, 1995) p. 167.

L. Overgaard, H.G. Petersen and J.W. Perram, Motion planning for an articulated robot: a multiagent approach, in: Distributed Software Agents and Applications, eds. J.W. Perram and J.-P. Müller (Springer-Verlag, Berlin, 1996) p. 206.

N.S. Glance and T. Hogg, Dilemmas in computational societies, in: Proc. First Int. Conf. on Multi-Agent Systems, ed. V. Lesser (AAAI Press/MIT Press, Menlo Park, CA, and Cambridge, MA, 1995) p. 117.

J.O. Kephart, T. Hogg and B.A. Huberman, Phys. Rev. A 40 (1989) p. 404.

K.S. Decker and V.R. Lesser, Designing a family of coordination algorithms, in: Proc. First Int. Conf. on Multi-Agent Systems, ed. V. Lesser (AAAI Press/MIT Press, Menlo Park, CA, and Cambridge, MA, 1995) p. 73.

J. Denzinger, Knowledge-baaed distributed search using teamwork, in: Proc. First Int. Conf. on Multi-Agent Systems, ed. V. Lesser (AAAI Press/MIT Press, Menlo Park, CA, and Cambridge, MA, 1995) p. 81.

D. Maio and S. Rizzi, Unsupervised multi-agent exploration of structured environments, in: Proc. First Int. Conf. on Multi-Agent Systems, ed. V. Lesser (AAAI Press/MIT Press, Menlo Park, CA, and Cambridge, MA, 1995) p. 269.

A. Knoll and J. Meinkoehn, Hierarchical and lateral coordination in multi-agent systems: an analysis of message traffic flow, in: Proc. First Int. Conf. on Multi-Agent Systems, ed. V. Lesser (AAAI Press/MIT Press, Menlo Park, CA, and Cambridge, MA, 1995) p. 225.

S.-C. Chou, Mechanical Geometry Theorem Proving (D. Reidel, Dordrecht, Netherlands, 1988).

L. Sterling, A. Bundy and L. Byrd, Solving symbolic equations with PRESS, in: Proc. EUROCAM '82, ed. J. Calmet, LNCS 144 (Springer-Verlag, Berlin, 1982) p. 108.

G.E. Collins and H. Hong, J. Symb. Comp. 12 (1991) 299.

H. Hong, Heuristic search strategies for cylindrical algebraic decomposition, in: Artificial Intelligence and Symbolic Mathematical Computing, eds. J. Calmet and J.A. Campbell, LNCS 737 (Springer-Verlag, Berlin, 1993) p. 151.

R. Hähnle, A new translation from deduction into integer programming, in: Artificial Intelligence and Symbolic Mathematical Computing, eds. J. Calmet and J.A. Campbell, LNCS 737 (Springer-Verlag, Berlin, 1993) p. 262.

A. Rege and J. Canny, A practical algorithm for geometric theorem proving, in: Integrating Symbolic Mathematical Computation and Artificial Intelligence, eds. J. Calmet and J.A. Campbell, LNCS 958 (Springer-Verlag, Berlin, 1995) p. 10.

D. Wang, Geometry machines: from artificial intelligence to symbolic mathematical computation, in: Artificial Intelligence and Symbolic Mathematical Computation, eds. J. Calmet, J.A. Campbell and J. Pfalzgraf (Springer-Verlag, Berlin, 1996) p. 213.

R. Michalski, J. Carbonell and T.M. Mitchell (eds.), Machine Learning, 3 vols (Tioga Press, Palo Alto, CA, and Springer-Verlag, Berlin, 1983 and subsequent years).

D.B. Lenat, AM: an Artificial Intelligence approach to discovery in mathematics as heuristic search, in: Knowledge-Based Systems in Artificial Intelligence, eds. R. Davis and D. Lenat (McGraw-Hill, New York, 1982) p. 3.

G.D. Ritchie and F.K. Hanna, Artificial Intelligence 23 (1984) 249.

P. Langley, Strategy acquisition governed by experimentation, in: Progress in Artificial Intelligence, eds. L. Steels and J.A. Campbell (Ellis Horwood, Chichester, England, 1985) p. 52.

J.A. Campbell, J. Phys. A 12 (1979) 1149.

P. Langley, H.A. Simon, G. Bradshaw and J.M. Zytkow, Scientific Discovery: Computational Explorations of the Creative Process (MIT Press, Cambridge, MA, 1987).

S. Kocabas, Machine Learning 6 (1991) 277.

R.E. Valdes-Perez, Artificial Intelligence 82 (1996) 331.

P.J. Hayes, The Naive Physics Manifesto, in Expert Systems in the Microelectronic Age, ed. D. Michie (Edinburgh University Press, Edinburgh, 1979) p. 139.

K.D. Forbus, Artificial Intelligence 24 (1984) 85.

J. de Kleer, A.K. Mackworth and R. Reiter, Artificial Intelligence 56 (1992) 197.

P. Struss, paper in the present issue of this journal.

A.G. Cohn, Calculi for qualitative spatial reasoning, in: Artificial Intelligence and Symbolic Mathematical Computation, eds. J. Calmet, J.A. Campbell and J. Pfalzgraf, LNCS 1128 (Springer-Verlag, Berlin, 1996) p. 124.

A. Colmerauer, Comm. ACM 28 (1990) 418.

R. Rueher, Software — Practice & Experience 23 (1993).

D. Bouhineau, Solving geometrical constraint systems using CLP based on linear constraint solver, in: Artificial Intelligence and Symbolic Mathematical Computation, eds. J. Calmet, J.A. Campbell and J. Pfalzgraf, LNCS 1128 (Springer-Verlag, Berlin, 1996) p. 274.

A. Semenov, A. Babichev and A. Leshchenko, Subdefinite computations and symbolic transformations in the UniCalc solver, in: Integrating Symbolic Mathematical Computation and Artificial Intelligence, eds. J. Calmet and J.A. Campbell, LNCS 958 (Springer-Verlag, Berlin, 1995) p. 264.

J. Jaffar, S. Michaylov, P.-J. Stuckey and R. Yap, ACM Trans. Prog. Lang. Syst. 14 (1992) 339.

W. Leler, Constraint Programming (Addison-Wesley, Reading, MA, 1989).

H-W. Güsgen, CONSAT: a System for Constraint Satisfaction (Pitman, London, 1989).

P. Ladkin and A. Reinefeld, paper in the present issue of this journal.

P. Madden and I. Green, A general technique for automatically optimizing programs through the use of proof plans, in: Integrating Symbolic Mathematical Computation and Artificial Intelligence, eds. J. Calmet and J.A. Campbell, LNCS 958 (Springer-Verlag, Berlin, 1995) p. 64.

Y.V. Kapitonova, A.A. Letichevsky, M.S. L'vov and V.A. Volkov, Tools for solving problems in the scope of algebraic programming, in: Integrating Symbolic Mathematical Computation and Artificial Intelligence, eds. J. Calmet and J.A. Campbell, LNCS 958 (Springer-Verlag, Berlin, 1995) p. 30.

K. Homann and J. Calmet, Combining theorem proving and symbolic mathematical computing, in: Integrating Symbolic Mathematical Computation and Artificial Intelligence, eds. J. Calmet and J.A. Campbell, LNCS 958 (Springer-Verlag, Berlin, 1995) p. 18.