A patchy particle model for C-S-H formation

Cement and Concrete Research - Tập 152 - Trang 106658 - 2022
Achutha Prabhu1, Jorge S. Dolado2,3, Eddie A.B. Koenders4, Rafael Zarzuela5, María J. Mosquera5, Ines Garcia-Lodeiro6, María Teresa Blanco-Varela6
1TECNALIA, Basque Research and Technology Alliance (BRTA), Building Technologies Division, Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 700, 48160 Derio, Spain
2Centro de Física de Materiales, Centro Mixto CSIC-UPV/EHU, Paseo Manuel Lardizabal 5, 20018, San Sebastián, Spain
3Donostia International Physics Center, Paseo Manuel Lardizabal 3, 20018 San Sebastián, Spain
4Institute of Construction and Building Materials, Technical University of Darmstadt, Franziska-Braun-Strasse 3, 64287 Darmstadt, Germany
5Department of Physical Chemistry, Faculty of Sciences, Universidad de Cádiz, Campus Río San Pedro s/n, 11510, Puerto Real, Cádiz, Spain
6Spanish National Research Council CSIC, Eduardo Torroja Institute for construction science (IETcc), Serrano Galvache 4, 28033 Madrid, Spain

Tài liệu tham khảo

Jennings, 2008, Characterization and modeling of pores and surfaces in cement paste: correlations to processing and properties, J. Adv. Concr. Technol., 6, 5, 10.3151/jact.6.5 Koenders, 2009, 267, 1 Dolado, 2011, Recent advances in modeling for cementitious materials, Cem. Concr. Res., 41, 711, 10.1016/j.cemconres.2011.03.014 Taylor, 1990 Allen, 2007, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nat. Mater., 6, 311, 10.1038/nmat1871 Cong, 1996, 29Si MAS NMR study of the structure of calcium silicate hydrate, Adv. Cem. Based Mater., 3, 144, 10.1016/S1065-7355(96)90046-2 Ayuela, 2007, Silicate chain formation in the nanostructure of cement-based materials, J. Chem. Phys., 127, 10.1063/1.2796171 Dolado, 2007, A molecular dynamic study of cementitious calcium silicate hydrate (C-S-H) gels, J. Am. Ceram. Soc., 90, 3938, 10.1111/j.1551-2916.2007.01984.x Pellenq, 2009, A realistic molecular model of cement hy drates, Proc. Natl. Acad. Sci., 106, 16102, 10.1073/pnas.0902180106 Hou, 2020 Scherer, 2018, Kinetic analysis of C-S-H growth on calcite, Cem. Concr. Res., 103, 226, 10.1016/j.cemconres.2016.07.017 Ouzia, 2018, The needle model: a new model for the main hydration peak of alite, Cem. Concr. Res. Kovačević, 2015, Atomistic modeling of crystal structure of Ca1.67SiHx, Cem. Concr. Res., 67, 197, 10.1016/j.cemconres.2014.09.003 Du, 2019, Chemical composition of calcium-silicate-hydrate gels: competition between kinetics and thermodynamics, 3 Kovačević, 2016, Revised atomistic models of the crystal structure of C–S–H with high C/S ratio, Z. Phys. Chem., 230, 1411, 10.1515/zpch-2015-0718 Mohamed, 2018, An atomistic building block description of C-S-H - towards a realistic C-S-H model, Cem. Concr. Res., 107, 221, 10.1016/j.cemconres.2018.01.007 Kumar, 2017, The atomic-level structure of cementitious calcium silicate hydrate, J. Phys. Chem. C, 121, 17188, 10.1021/acs.jpcc.7b02439 Mohamed, 2020, The atomic-level structure of cementitious calcium aluminate silicate hydrate, J. Am. Chem. Soc., 142, 11060, 10.1021/jacs.0c02988 Kulik, 2022, A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: thermodynamic basis, methods, and Ca-Si-H2O core sub-model, Cem. Concr. Res., 151, 106585, 10.1016/j.cemconres.2021.106585 Yamahara, 1998, Molecular dynamics simulation of the structural development in sol–gel process for silica systems, Fluid Phase Equilib., 144, 449, 10.1016/S0378-3812(97)00289-6 Hou, 2015, Morphology of calcium silicate hydrate (C-S-H) gel: a molecular dynamic study, Adv. Cem. Res., 27, 135, 10.1680/adcr.13.00079 Rodriguez, 2015, Composition, silicate anion structure and morphology of calcium silicate hydrates (C-S-H) synthesised by silica-lime reaction and by controlled hydration of tricalcium silicate (c3s), Adv. Appl. Ceram., 114, 362, 10.1179/1743676115Y.0000000038 Andalibi, 2018, On the mesoscale mechanism of synthetic calcium–silicate–hydrate precipitation: a population balance modeling approach, J. Mater. Chem. A, 6, 363, 10.1039/C7TA08784E Hafner, 2019, Minimal coarse-grained models for molecular self-organisation in biology, Curr. Opin. Struct. Biol., 58, 43 Rovigatti, 2018, How to simulate patchy particles, 41, 59 Kern, 2003, Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction, J. Chem. Phys., 118, 9882, 10.1063/1.1569473 Rolland, 2020, New patchy particle model with anisotropic patches for molecular dynamics simulations: application to a coarse-grained model of cellulose nanocrystal, J. Chem. Theory Comput., 16, 3699, 10.1021/acs.jctc.0c00259 Romano, 2010, Phase diagram of a tetrahedral patchy particle model for different interaction ranges, J. Chem. Phys., 132, 10.1063/1.3393777 Noya, 2007, Phase diagram of model anisotropic particles with octahedral symmetry, J. Chem. Phys., 127, 10.1063/1.2752155 Tavares, 2017, Dynamics of patchy particles in and out of equilibrium, J. Phys. Chem. B, 122, 3514, 10.1021/acs.jpcb.7b10726 Fantoni, 2015, Wertheim perturbation theory: thermodynamics and structure of patchy colloids, Mol. Phys., 113, 2593, 10.1080/00268976.2015.1061150 Prabhu, 2014, Brownian cluster dynamics with short range patchy interactions: its application to polymers and step-growth polymerization, J. Chem. Phys., 141, 10.1063/1.4886585 Rottereau, 2005, Influence of the brownian step size in off-lattice Monte Carlo simulations of irreversible particle aggregation, Eur. Phys. J. E, 18, 15 Babu, 2008, The influence of bond rigidity and cluster diffusion on the self-diffusion of hard spheres with square well interaction, J. Chem. Phys., 128, 10.1063/1.2925686 Zarzuela, 2020, Producing C-S-H gel by reaction between silica oligomers and portlandite: a promising approach to repair cementitious materials, Cem. Concr. Res., 130 Cai, 2016, The use of tetraethyl orthosilicate silane (TEOS) for surface-treatment of hardened cement-based materials: a comparison study with normal treatment agents, Constr. Build. Mater., 117, 144, 10.1016/j.conbuildmat.2016.05.028 Franzoni, 2013, Ethyl silicate for surface protection of concrete: performance in comparison with other inorganic surface treatments, Cem. Concr. Compos., 44, 69, 10.1016/j.cemconcomp.2013.05.008 Peeters, 1998, 17O-NMR of sol-gel processes of TEOS and TMOS, J. Sol-Gel Sci. Technol., 13, 71, 10.1023/A:1008699104854 Depla, 2011, J. Phys. Chem. C, 115, 3562, 10.1021/jp109901v Sandrolini, 2012, Ethyl silicate for surface treatment of concrete – part i: pozzolanic effect of ethyl silicate, Cem. Concr. Compos., 34, 306, 10.1016/j.cemconcomp.2011.12.003 Barberena-Fernández, 2015, Interaction of TEOS with cementitious materials: chemical and physical effects, Cem. Concr. Compos., 55, 145, 10.1016/j.cemconcomp.2014.09.010 Zhang, 2018, Morphology of cementitious material during early hydration, Cem. Concr. Res., 107, 85, 10.1016/j.cemconres.2018.02.004 Babu, 2006, Phase separation and percolation of reversibly aggregating spheres with a square-well attraction potential, J. Chem. Phys., 125 Chen, 2004, Solubility and structure of calcium silicate hydrate, Cem. Concr. Res., 34, 1499, 10.1016/j.cemconres.2004.04.034 Diaz Facio, 2017, Facile preparation of mesoporous silica monoliths by an inverse micelle mechanism, Microporous Mesoporous Mater., 247, 166, 10.1016/j.micromeso.2017.03.041 Facio, 2017, Producing lasting amphiphobic building surfaces with self-cleaning properties, Nanotechnology, 28, 10.1088/1361-6528/aa73a3 Mauro, 2011, Topological constraint theory of glass, 90, 31