A partially overdetermined problem in a half ball

Springer Science and Business Media LLC - Tập 58 - Trang 1-15 - 2019
Jinyu Guo1, Chao Xia1
1School of Mathematical Sciences, Xiamen University, Xiamen, People’s Republic of China

Tóm tắt

In this paper, we study a partially overdetermined mixed boundary value problem in a half ball. We prove that a domain on which this partially overdetermined problem admits a solution if and only if the domain is a spherical cap intersecting $$\mathbb {S}^{n-1}$$ orthogonally. As an application, we show that a stationary point for a partially torsional rigidity under a volume constraint must be a spherical cap.

Tài liệu tham khảo

Agranovich, M.S.: On a mixed Poincare–Steklov type spectral problem in a Lipschitz domain. Russ. J. Math. Phys. 13(3), 281–290 (2006) Alexandrov, A.D.: Uniqueness theorem for surfaces in the large. Russ. Vestn. Leningrad Univ. Math. 13(19), 5–8 (1958). Series 2, Amer. Math. Soc. Transl. 12, 412–416 (1962) Bañuelos, R., Kulczycki, T., Polterovich, I., Siudeja, B.: Eigenvalue inequalities for mixed Steklov problems. In: Michael, L., Vassiliev, D. (eds.) Operator Theory and its Applications, American Mathematical Society Translations: Series 2, vol. 231, pp. 19–34. American Mathematical Society, Providence, RI (2010) Bokowski, J., Sperner, E.: Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math. 311–312, 80–100 (1979) Burago, Y.D., Zalgaller, V.A.: Geometric Inequalities, Translated from the Russian by A. B. SosinskiÄ. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer Series in Soviet Mathematics, vol. 285. Springer, Berlin (1988) Ciraolo, G., Roncoroni, A.: Serrin’s type overdetermined problems in convex cones. ArXiv preprint arXiv:1806.08553v2 (2018) Ciraolo, G., Vezzoni, L.: On Serrin’s overdetermined problem in space forms. Manuscr. Math. 159(3–4), 445–452 (2019) Del Pino, M., Pacard, F., Wei, J.: Serrin’s overdetermined problem and constant mean curvature surfaces. Duke Math. J. 164(14), 2643–2722 (2015) Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226(5), 4011–4030 (2011) Fraser, A., Schoen, R.: Sharp eigenvalue bounds and minimal surfaces in the ball. Invent. Math. 203(3), 823–890 (2016) Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Classics in Mathematics. Springer, Berlin (2001) Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman Advanced Publishing Program, Boston (1985) Henrot, A., Pierre, M.: Variation et Optimisation de Formes: Une Analyse G\(\acute{e}\)om\(\acute{e}\)trique, Springer, Berlin (2005). English version: Shape Variation and Optimization: A Geometrical Analysis, Tracts in Mathematics 28, European Mathematical Society (2018) Lieberman, G.M.: Mixed BVPs for elliptic and parabolic differential equations of second order. J. Math. Anal. Appl. 113(2), 422–440 (1986) Magnanini, R.: Alexandrov, Serrin, Weinberger, Reilly: symmetry and stability by integral identities. ArXiv preprint arXiv:1709.08939 (2017) Magnanini, R., Poggesi, G.: Serrin’s problem and Alexandrov’s Soap Bubble Theorem: stability via integral identities. arxiv:1708.07392 (to appear in Indiana Univ. Math. J.) Magnanini, R., Poggesi, G.: Nearly optimal stability for Serrin’s problem and the Soap Bubble Theorem. arxiv:1903.04823 (preprint) (2019) Nitsch, C., Trombetti, C.: The classical overdetermined Serrin problem. Complex Var. Elliptic Equ. 63(7–8), 1107–1122 (2018) Payne, L.E., Schaefer, Philip W.: Duality theorems in some overdetermined boundary value problems. Math. Methods Appl. Sci. 11(6), 805–819 (1989) Pólya, G.: Torsional rigidity, principal frequency, electrostatic capacity and symmetrization. Q. Appl. Math. 6, 267–277 (1948) Pacella, F., Tralli, G.: Overdetermined problems and constant mean curvature surfaces in cones. ArXiv preprint arXiv:1802.03197v2 (to appear in Revista Matemática Iberoamericana) Qiu, G., Xia, C.: Overdetermined boundary value problems in \({\mathbb{S}}^n\). J. Math. Study 50(2), 165–173 (2017) Reilly, R.C.: Applications of the Hessian operator in a Riemannian manifold. Indiana Univ. Math. J. 26(3), 459–472 (1977) Ros, A.: Compact hypersurfaces with constant higher order mean curvatures. Rev. Mat. Iberoam. 3, 447–453 (1987) Ros, A., Souam, R.: On stability of capillary surfaces in a ball. Pac. J. Math. 178(2), 345–361 (1997) Serrin, J.: A symmetry problem in potential theory. Arch. Ration. Mech. Anal. 43, 304–318 (1971) Wang, G., Xia, C.: Uniqueness of stable capillary hypersurfaces in a ball. Math. Ann. 374(3–4), 1845–1882 (2019) Weinberger, H.: Remark on the preceding paper of Serrin. Arch. Ration. Mech. Anal. 43, 319–320 (1971) Wente, H.C.: The symmetry of sessile and pendent drops. Pac. J. Math. 88(2), 387–397 (1980)