A partial imputation EM-algorithm to adjust the overestimated shape parameter of the Weibull distribution fitted to the clinical time-to-event data

Computer Methods and Programs in Biomedicine - Tập 197 - Trang 105697 - 2020
Kyungmee Choi1, Sung Min Park2, Seunghoon Han3,4, Dong-Seok Yim3,4
1College of Science and Technology, Hongik University, 2639 Sejong-ro, Sejong 30016, South Korea
2Nubentra Pharma Sciences, 2525 Meridian Parkway Suite 200, Durham NC 27713, USA
3Department of Clinical Pharmacology and Therapeutics, Seoul St. Mary's Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea
4PIPET (Pharmacometrics Institute for Practical Education and Training), College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea

Tài liệu tham khảo

Lawless, 1982 Collett, 2003 Lee, 2018, A simplified prognostic model to predict mortality in patients with acute variceal bleeding, Digest. Liver Dis., 50, 247, 10.1016/j.dld.2017.11.006 Mackisack, 1996, A cautionary tale about Weibull analysis [reliability estimation], IEEE Trans. Reliab., 45, 244, 10.1109/24.510809 Ross, 1994, Formulas to describe the bias and standard deviation of the ML-estimated Weibull shape parameter, IEEE Trans. Dielectr. Electr. Insul., 1, 247, 10.1109/94.300257 Ross, 1996, Bias and standard deviation due to Weibull parameter estimation for small data sets, IEEE Trans. Dielectr. Electr. Insul., 3, 28, 10.1109/94.485512 Thoman, 1969, Inferences on the parameters of the Weibull distribution, Technometrics, 11, 445, 10.1080/00401706.1969.10490706 Yang, 2003, Efficient estimation of the Weibull shape parameter based on a modified profile likelihood, J. Stat. Comput. Simul., 73, 115, 10.1080/00949650215729 Kundu, 2009, Estimating the parameters of the Marshall–Olkin bivariate Weibull distribution by EM algorithm, Comput. Stat. Data Anal., 53, 956, 10.1016/j.csda.2008.11.009 Nandi, 2010, An EM algorithm for estimating the parameters of bivariate Weibull distribution under random censoring, Comput. Stat. Data Anal., 54, 1559, 10.1016/j.csda.2010.01.004 Ng, 2002, Estimation of parameters from progressively censored data using EM algorithm, Comput. Stat. Data Anal., 39, 371, 10.1016/S0167-9473(01)00091-3 Roth, 1994, Missing data: a conceptual review for applied psychologists, Personnel Psychol., 47, 537, 10.1111/j.1744-6570.1994.tb01736.x Peugh, 2004, Missing data in educational research: A review of reporting practices and suggestions for improvement, Rev. Educ. Res., 74, 525, 10.3102/00346543074004525 Harel, 2007, Multiple imputation: review of theory, implementation and software, Stat. Med., 26, 3057, 10.1002/sim.2787 Donders, 2006, A gentle introduction to imputation of missing values, J. Clin. Epidemiol., 59, 1087, 10.1016/j.jclinepi.2006.01.014 Lin, 2010, A comparison of multiple imputation with EM algorithm and MCMC method for quality of life missing data, Qual. Quant., 44, 277, 10.1007/s11135-008-9196-5 Wei, 1990, A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithms, J. Am. Stat. Assoc., 85, 699, 10.1080/01621459.1990.10474930 Dempster, 1977, Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc., 39, 1 Laird, 1988, Missing data in longitudinal studies, Stat. Med., 7, 305, 10.1002/sim.4780070131 Ruud, 1991, Extensions of estimation methods using the EM algorithm, J. Econ., 49, 305, 10.1016/0304-4076(91)90001-T Tobin, 1958, Estimation of relationships for limited dependent variables, Econometrica 26, 24, 10.2307/1907382