A parallel study of Ni@Si12 and Cu@Si12 nanoclusters

Journal of Mathematical Chemistry - Tập 46 - Trang 971-980 - 2009
A. D. Zdetsis1, E. N. Koukaras1, C. S. Garoufalis1
1Department of Physics, University of Patras, Patras, Greece

Tóm tắt

The Ni@Si12 and Cu@Si12 clusters are studied in parallel within the framework of the density functional theory using the hybrid functional of Becke-Lee, Parr and Yang (B3LYP), emphasizing the differences and similarities in structural and electronic properties. The dominant structures for both clusters are a distorted hexagonal structure of Cs symmetry and a distorted octahedral structure of D2d. For Ni@Si12 the two structures are practically isonergetic whereas for Cu@Si12 the energy difference of the D2d structure from the lowest Cs structure of hexagonal origin is about 0.7 eV, at the B3LYP/TZVP level of theory. Contrary to Cu@Si12 for which the well known Frank–Kasper (FK) structure of C5v symmetry is a real local minimum of the energy hyper-surface (although higher by more than 1.6 eV from the global minimum), for Ni@Si12 the FK structure is dynamically unstable. The HOMO-LUMO gaps, the binding energies per atom and the embedding energies for Cu@Si12 clusters are smaller by 0.5, 0.1 and 1.1 eV, respectively compared to the Ni@Si12 clusters. This is attributed to different type of bonding in the two clusters.

Tài liệu tham khảo

Beck S.M.: J. Chem. Phys. 90, 6306 (1989) Beck S.M.: J. Chem. Phys. 87, 4233 (1987) Hiura H., Miyazaki T., Kanayama T.: Phys. Rev. Lett. 86, 1733 (2001) Xiao C., Hagelberg F.: Phys. Rev. B 66, 075425 (2002) Sen P., Mitas L.: Phys. Rev. B 68, 155404 (2003) Menon M., Andriotis A., Froudakis G.: Nano Lett. 2, 301 (2002) Singu A.K., Briere T.M., Kumar V., Kawazoe Y.: Phys. Rev. Lett. 91, 146802 (2003) Khanna S.N., Rao B.K., Jena P.: Phys. Rev. Lett. 89, 016803 (2002) Kumar V.: Eur. Phys. J. D 24, 227 (2003) Lu J., Nagase S.: Phys. Rev. Lett. 90, 115506 (2003) Mpourmpakis G., Froudakis G.E., Andriotis A.N., Menon M.: Phys. Rev. B 68, 125407 (2003) Kumar V.: Comp. Mat. Sci. 30, 260 (2004) Zdetsis A.D.: Phys. Rev. A 64, 023202 (2001) Zdetsis A.D.: Rev. Adv. Mat. Sci. (RAMS) 11, 56–78 (2006) Garoufalis C.S., Zdetsis A.D., Grimme S.: Phys. Rev. Lett. 87, 276402 (2001) Becke A.D.: Phys. Rev. A 38, 3098 (1988) Perdew J.P.: Phys. Rev. B 33, 8822 (1986) Schäfer A., Horn H., Ahlrichs R.: J. Chem. Phys. 97, 2571 (1992) Eichkorn K., Treutler O., Häser H., Häser M., Ahlrichs R.: Chem. Phys. Lett. 240, 283 (1995) Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J.: J. Phys. Chem. 98, 11623 (1994) Schäfer A., Huber C., Ahlrichs R.: J. Chem. Phys. 100, 5829 (1994) Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J.: J. Phys. Chem. 98, 11623 (1994) Yanagisawa K., Tsuneda T., Hirao K.: J. Chem. Phys. 112, 545 (2000) Ahlrichs R., Bär M., Häser M., Horn H., Kölmel C.: Chem. Phys. Lett. 162, 165 (1989) Andriotis A.T., Mpourmpakis G., Froudakis G.E., Menon M.: New J. Phys. 4, 78 (2002)