A parallel finite element method for incompressible magnetohydrodynamics equations

Applied Mathematics Letters - Tập 102 - Trang 106076 - 2020
Xiaojing Dong1,2, Yinnian He3
1Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Key Laboratory of Intelligent Computing & Information Processing of Ministry of Education, School of Mathematics and Computational Science, Xiangtan University, Xiangtan, 411105, PR China
2Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, PR China
3School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, PR China

Tài liệu tham khảo

Schötzau, 2004, Mixed finite element methods for stationary incompressible magneto-hydrodynamics, Numer. Math., 96, 771, 10.1007/s00211-003-0487-4 Hiptmair, 2018, A fully divergence-free finite element method for magnetohydrodynamic equations, Math. Models Methods Appl. Sci., 28, 659, 10.1142/S0218202518500173 Hu, 2017, Stable finite element methods preserving ∇⋅B=0 exactly for MHD models, Numer. Math., 135, 371, 10.1007/s00211-016-0803-4 Su, 2016, Iterative methods in penalty finite element discretization for the steady MHD equations, Comput. Methods Appl. Mech. Engrg., 304, 521, 10.1016/j.cma.2016.02.039 Trenchea, 2014, Unconditional stability of a partitioned IMEX method for magnetohydrodynamic flows, Appl. Math. Lett., 27, 97, 10.1016/j.aml.2013.06.017 Xu, 2000, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp., 69, 881, 10.1090/S0025-5718-99-01149-7 Tang, 2017, Local and parallel finite element algorithm based on Oseen-type iteration for the stationary incompressible MHD flow, J. Sci. Comput., 70, 149, 10.1007/s10915-016-0246-1 Zhang, 2017, Local and parallel finite element algorithm for stationary incompressible magnetohydrodynamics, Numer. Methods PDE, 33, 1513, 10.1002/num.22151 Sermane, 1984, Some mathematics questions related to the MHD equations, Comm. Pure Appl. Math., XXXIV, 635 Zhang, 2014, Analysis of coupling iterations based on finite element method for stationary magnetohydrodynamics on a general domain, Comput. Math. Appl., 68, 770, 10.1016/j.camwa.2014.07.025 Nédélec, 1986, A new family of mixed finite elements in R3, Numer. Math., 50, 57, 10.1007/BF01389668 Dong, 2014, Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics, Comput. Methods Appl. Mech. Engrg., 276, 287, 10.1016/j.cma.2014.03.022 He, 2018, A priori estimates and optimal finite element approximation of MHD flow in smooth domains, ESIAM Math Model. Numer. Anal., 52, 181, 10.1051/m2an/2018006 Y.N. He, G.D. Zhang, J. Zou, Finite element method of the MHD flow II: time discretization, Submitted. Shang, 2011, A parallel two-level linearization method for incompressible flow problems, Appl. Math. Lett., 24, 364, 10.1016/j.aml.2010.10.027 Babus̆ka, 1997, The partition of unity method, Int. J. Numer. Methods Eng., 40, 727, 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N Xu, 2010, A two-level domain decomposition method for image restoration, Inverse Probl. Imaging, 4, 523, 10.3934/ipi.2010.4.523 Dong, 2018, Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow, Adv. Comput. Math., 44, 1295, 10.1007/s10444-017-9582-4