A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning

Kang Li1,2, Fazhi He1, Haiping Yu1, Xiao Chen1
1State Key Laboratory of Software Engineering, School of Computer Science, Wuhan University, Wuhan, China
2School of Computer Science and Information Engineering, Hubei University, Wuhan, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ali A, Jalil A, Niu J, Zhao X, Rathore S, Ahmed J, Iftikhar MA. Visual object tracking-classical and contemporary approaches. Frontiers of Computer Science, 2016, 10(1): 167–188

Wang Y, Zhao Q. Patchwise tracking via spatio-temporal constraintbased sparse representation and multiple-instance learning-based SVM. In: Proceedings of International Conference on Neural Information Processing. 2015, 264–271

Li K, He F, Chen X. Real-time object tracking via compressive feature selection. Frontiers of Computer Science, 2016, 10(4): 689–701

Wu G, Lu W, Gao G, Zhao C, Liu J. Regional deep learning model for visual tracking. Neurocomputing, 2016, 175: 310–323

Wu Y, PeiM, Yang M, Yuan J, Jia Y. Robust discriminative tracking via landmark-based label propagation. IEEE Transactions on Image Processing, 2015, 24(5): 1510–1523

Wang L, Liu T, Wang G, Chan K L, Yang Q. Video tracking using learned hierarchical features. IEEE Transactions on Image Processing, 2015, 24(4): 1424–1435

Zhang K, Liu Q, Wu Y, Yang M H. Robust visual tracking via convolutional networks without training. IEEE Transactions on Image Processing, 2016, 25(4): 1779–1792

Xu C, Tao W, Meng Z, Feng Z. Robust visual tracking via online multiple instance learning with fisher information. Pattern Recognition, 2015, 48(12): 3917–3926

Wang G, Qin X, Zhong F, Liu Y, Li H, Peng Q, Yang M. Visual tracking via sparse and local linear coding. IEEE Transactions on Image Processing, 2015, 24(11): 3796–3809

Sun X, Yao H, Zhang S, Li D. Non-rigid object contour tracking via a novel supervised level set model. IEEE Transactions on Image Processing, 2015, 24(11): 3386–3399

Sui Y, Zhang S, Zhang L. Robust visual tracking via sparsity-induced subspace learning. IEEE Transactions on Image Processing, 2015, 24(12): 4686–4700

Jang S I, Choi K, Toh K A, Teoh A B J, Kim J. Object tracking based on an online learning network with total error rate minimization. Pattern Recognition, 2015, 48(1): 126–139

Sun J, He F, Chen Y, Chen X. A multiple template approach for robust tracking of fast motion target. Applied Mathematics-A Journal of Chinese Universities, 2016, 31(2): 177–197

Hong-tu H, Du-yan B, Yu-fei Z, Shi-ping M, Shan G, Chang L. Robust visual tracking based on product sparse coding. Pattern Recognition Letters, 2015, 56: 52–59

Chen C, Li S, Qin H, Hao A. Real-time and robust object tracking in video via low-rank coherency analysis in feature space. Pattern Recognition, 2015, 48(9): 2885–2905

Zhang T, Liu S, Ahuja N, Yang M H, Ghanem B. Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision, 2015, 111(2): 171–190

Zhang X, Hu W, Xie N, Bao H, Maybank S. A robust tracking system for low frame rate video. International Journal of Computer Vision, 2015, 115(3): 279–304

Zhou Y, Bai X, Liu W, Latecki L J. Similarity fusion for visual tracking. International Journal of Computer Vision, 2016, 118(3): 337–363

Zhang D, He F, Han S, Zou L, WuY, Chen Y. An efficient approach to directly compute the exact Hausdorff distance for 3D point sets. Integrated Computer-Aided Engineering, 2017, 24(3), 261–277

Li X, Shen C, Dick A, Zhang Z M, Zhuang Y. Online metric-weighted linear representations for robust visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(5): 931–950

Zhang T, Liu S, Xu C, Yan S, Ghanem B, Ahuja N, Yang M H. Structural sparse tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, 150–158

Li K, He F, Yu H P. Robust visual tracking based on convolutional features with illumination and occlusion handling. Journal of Computer Science and Technology, 2018, 33(1): 223–236

Liu T, Wang G, Yang Q. Real-time part-based visual tracking via adaptive correlation filters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2015, 4902–4912

Chen Y L, He F Z, Wu Y Q, Hou N. A local start search algorithm to compute exact Hausdorff distance for arbitrary point sets. Pattern Recognition, 2017, 67: 139–148

Zhang Z, Hong Wong K. Pyramid-based visual tracking using sparsity represented mean transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1226–1233

Zhang T, Jia K, Xu C, Ma Y, Ahuja N. Partial occlusion handling for visual tracking via robust part matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1258–1265

Yu H P, He F, Pan Y. A novel region-based active contour model via local patch similarity measure for image segmentation. Multimedia Tools and Applications, 2018: 1–23

Danelljan M, Shahbaz Khan F, Felsberg M, Van de Weijer J. Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 1090–1097

Yang M, Pei M T, Wu Y W, Jia Y. Learning online structural appearance model for robust object tracking. Science China Information Sciences, 2015, 58(3): 1–14

Smeulders A W, Chu D M, Cucchiara R, Calderara S, Dehghan A, Shah M. Visual tracking: an experimental survey. IEEE Transactions on Pattern Analysis andMachine Intelligence, 2014, 36(7): 1442–1468

Zhang H, Hu S, Yang G. Video object tracking based on appearance models learning. Journal of Computer Research and Development, 2015, 52(1): 177–190

Cehovin L, Leonardis A, Kristan M. Visual object tracking performance measures revisited. IEEE Transactions on Image Processing, 2016, 25(3): 1261–1274

Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2411–2418

Ni B, He F, Pan Y, Yuan Z. Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computeraided therapy. AppliedMathematics-A Journal of Chinese Universities, 2016, 31(1): 37–52

Yan X, He F, Hou N, Ai H. An efficient particle swarm optimization for large scale hardware/software co-design system. International Journal of Cooperative Information Systems, 2018, 27(1): 1741001

Yu Q, Dinh T B, Medioni G. Online tracking and reacquisition using co-trained generative and discriminative trackers. In: Proceedings of European Conference on Computer Vision. 2008, 678–691

Zhang D, He F, Han S, Li X. Quantitative optimization of interoperability during feature-based data exchange. Integrated Computer-Aided Engineering, 2016, 23(1): 31–51

Kwon J, Lee K M. Visual tracking decomposition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 1269–1276

Ross D A, Lim J, Lin R S, Yang M H. Incremental learning for robust visual tracking. International Journal of Computer Vision, 2008, 77(1): 125–141

Belhumeur P N, Kriegman D J. What is the set of images of an object under all possible illumination conditions? International Journal of Computer Vision, 1998, 28(3): 245–260

Mei X, Ling H. Robust visual tracking using L1 minimization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. 2009, 1436–1443

Bao C, Wu Y, Ling H, Ji H. Real time robust L1 tracker using accelerated proximal gradient approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1830–1837

Jia X, Lu H, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829

Zhong W, Lu H, Yang M H. Robust object tracking via sparsity-based collaborative model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1838–1845

Wang D, Lu H, Yang M H. Online object tracking with sparse prototypes. IEEE Transactions on Image Processing, 2013, 22(1): 314–325

Wang N, Wang J, Yeung D Y. Online robust non-negative dictionary learning for visual tracking. In: Proceedings of the IEEE International Conference on Computer Vision. 2013, 657–664

Zhang S, Yao H, Sun X, Lu X. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7): 1772–1788

Babenko B, Yang M H, Belongie S. Visual tracking with online multiple instance learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2009, 983–990

Wang N, Shi J, Yeung D Y, Jia J. Understanding and diagnosing visual tracking systems. In: Proceedings of the IEEE International Conference on Computer Vision. 2015, 3101–3109

Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks S L, Torr P H. Struck: structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(10): 2096–2109

Zhang K, Zhang L, Yang M. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision. 2012, 864–877

Kalal Z, Matas J, Mikolajczyk K. PN learning: bootstrapping binary classifiers by structural constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2010, 49–56

Kalal Z, Mikolajczyk K, Matas J. Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409–1422

Grabner H, Grabner M, Bischof H. Realtime tracking via on-line boosting. In: Proceedings of British Machine Vision Conference. 2006, 47–56

Arulampalam M S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188

Li K, He F, Ye H P, Chen X. A correlative classiffiers approach based on particle filter and sample set for tracking occluded target. Applied Mathematics-A Journal of Chinese Universities, 2017, 32(3): 294–312

Levey A, Lindenbaum M. Sequential Karhunen-Loeve basis extraction and its application to images. IEEE Transactions on Image Processing, 2000, 9(8): 1371–1374

Wang D, Lu H C, Yang M H. Least soft-thresold squares tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2013, 2371–2378

Wang D, Lu H. Visual tracking via probability continuous outlier model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014, 3478–3485

Jia X, Lu H, Yang M H. Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2012, 1822–1829

Dinh T B, Vo N, Medioni G. Context tracker: exploring supporters and distracters in unconstrained environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2011, 1177–1184

Viola P, Jones M. Rapid object detection using a boosted cascade of simple features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2001, 511–518

Zhou Y, He F, Qiu Y. Optimization of parallel iterated local search algorithms on graphics processing unit. The Journal of Supercomputing, 2016, 72(6): 2394–2416

Zhou Y, He F, Qiu Y. Dynamic strategy based parallel ant colony optimization on GPUs for TSPs. Science China Information Sciences, 2017, 60(6): 068102

Wu Y, He F, Zhang D, Li X. Service-oriented feature-based data exchange for cloud-based design and manufacturing. IEEE Transactions on Services Computing, DOI 10.1109/TSC.2015.2501981

Zhou Y, He F, Hou N. Parallel ant colony optimization on multi-core simdcpus. Future Generation Computer Systems, 2018, 79(2): 473–487

Yan X, He F, Chen Y. A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization. Journal of Computer Science and Technology, 2017, 32(2): 340–355

Lv X, He F, Cai W. Supporting selective undo of string-wise operations for collaborative editing systems. Future Generation Computer Systems, 2018, 82: 41–62

Lv X, He F, Cai W, Cheng Y. A string-wise CRDT algorithm for smart and large-scale collaborative editing systems. Advanced Engineering Informatics, 2017, 33: 397–409

Zhu H, Nie Y, Yue T, Cao X. The role of prior in image based 3D modeling: a survey. Frontiers of Computer Science, 2017, 11(2): 175–191

Han Y, Jia G. Optimizing product manufacturability in 3D printing. Frontiers of Computer Science, 2017, 11(2): 347–357