A parallel 3D computational method for fluid–structure interactions in parachute systems

Vinay Kalro1, Tayfun E. Tezduyar1
1Team for Advanced Flow Simulation and Modeling, Mechanical Engineering and Materials Science, Rice University-MS 321, 6100 Main Street, Houston, TX 77005, USA

Tài liệu tham khảo

Kalro, 1997, Parallel finite element simulation of large ram-air parachutes, Internat. J. Numer. Methods Fluids, 24, 1353, 10.1002/(SICI)1097-0363(199706)24:12<1353::AID-FLD564>3.0.CO;2-6 V. Kalro, W. Garrard, T.E. Tezduyar, Parallel finite element computation of the flare maneuver of a large ram-air parachute, AIAA-97-1427, in: 14th Aerodynamic Decelerator Systems Conference, San Francisco, 1997 Tezduyar, 1997, Parallel computational methods for 3D simulation of a parafoil with prescribed shape changes, Parallel Computing, 23, 1349, 10.1016/S0167-8191(97)00057-4 R.J. Benney, K.R. Stein, J.W. Leonard, M.L. Accorsi, Current 3-D structural dynamic finite element modeling capabilities, AIAA-97-1506, in: Proceedings of the 14th Aerodynamic Decelerator Technology Conference, San Francisco, 1997 K. Stein, R. Benney, V. Kalro, A. Johnson, T.E. Tezduyar Parallel computation of parachute fluid–structure interactions, AIAA-97-1505, in: 14th Aerodynamic Decelerator Systems Conference, San Francisco, 1997 Tezduyar, 1992, A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary tests, Comput. Methods Appl. Mech. Engrg., 94, 339, 10.1016/0045-7825(92)90059-S Tezduyar, 1992, A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure:II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. Methods Appl. Mech. Engrg., 94, 353, 10.1016/0045-7825(92)90060-W Brooks, 1982, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199, 10.1016/0045-7825(82)90071-8 Hughes, 1989, A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective–diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 173, 10.1016/0045-7825(89)90111-4 Tezduyar, 1991, Stabilized finite element formulations for incompressible flow computations, Adv. in Appl. Mech., 28, 1, 10.1016/S0065-2156(08)70153-4 Wren, 1997, Simulation of flow problems with moving mechanical components, fluid–structure interactions and two-fluid interfaces, Internat. J. Numer. Methods Fluids, 24, 1433, 10.1002/(SICI)1097-0363(199706)24:12<1433::AID-FLD568>3.0.CO;2-U K. Stein, R. Benney, V. Kalro, T.E. Tezduyar, J. Leonard, M. Accorsi, Parachute fluid–structure interactions: 3D computation, Comput. Methods Appl. Mech. Engrg. 190 (2000) 373–386 Bathe, 1982 A. Po, Nonlinear dynamic analysis of cable and membrane structures, Ph.D. Thesis, Oregon State University, 1982 Hilber, 1977, Improved numerical dissipation for time-integration algorithms in structural dynamics, Earthquake Engrg. Struct. Dyn., 5, 283, 10.1002/eqe.4290050306 Tezduyar, 1996, Flow simulation and high performance computing, Computational Mechanics, 18, 397, 10.1007/BF00350249 Kalro, 1998, Parallel iterative computational methods for 3D finite element flow simulations, Comput. Assisted Mech. Engrg. Sci., 5, 173 Johnson, 1994, Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces, Comput. Methods Appl. Mech. Engrg., 119, 73, 10.1016/0045-7825(94)00077-8