A panel of bioluminescent whole-cell bacterial biosensors for the screening for new antibacterial substances from natural extracts
Tài liệu tham khảo
Bacha, 2016, Antimicrobial and anti-quorum sensing activities of selected medicinal plants of Ethiopia: implication for development of potent antimicrobial agents, BMC Microbiol., 16, 139, 10.1186/s12866-016-0765-9
Belkin, 2003, Microbial whole-cell sensing systems of environmental pollutants, Curr. Opin. Microbiol., 6, 206, 10.1016/S1369-5274(03)00059-6
Bryksin, 2010, Rational design of a plasmid origin that replicates efficiently in both gram-positive and gram-negative bacteria, PLoS One, 5, e13244, 10.1371/journal.pone.0013244
Cui, 2018, Application of a bacterial whole cell biosensor for the rapid detection of cytotoxicity in heavy metal contaminated seawater, Chemosphere, 200, 322, 10.1016/j.chemosphere.2018.02.097
De Bonis, 2016, Intraventricular versus intravenous colistin for the treatment of extensively drug resistant Acinetobacter baumannii meningitis, European journal of neurology, 23, 68, 10.1111/ene.12789
Dhawan, 2017, Necrotizing fasciitis of scalp and neck in neonates, APSPJ. Case Rrep., 8, 23, 10.21699/ajcr.v8i3.554
Galluzzi, 2006, Whole cell strategies based on lux genes for high throughput applications toward new antimicrobials, Comb. Chem. High Throughput Screen., 9, 501, 10.2174/138620706777935351
Jaisinghani, 2017, Antibacterial properties of quercetin, Microbiol. Res., 8, 10.4081/mr.2017.6877
Mahapatra, 2007, Activity of 7-methyljuglone derivatives against Mycobacterium tuberculosis and as subversive substrates for mycothiol disulfide reductase, Bioorganic & medicinal chemistry, 15, 7638, 10.1016/j.bmc.2007.08.064
Meinhardt, 2002
Murashige, 1962, A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 15, 473, 10.1111/j.1399-3054.1962.tb08052.x
Nair, 2016, Antimicrobial activity of plumbagin, a naturally occurring naphthoquinone from Plumbago rosea, against Staphylococcus aureus and Candida albicans, Int. J. Med. Microbiol., 306, 237, 10.1016/j.ijmm.2016.05.004
Paiva, 2003, Antimicrobial activity in vitro of plumbagin isolated from Plumbago species, Mem. Inst. Oswaldo Cruz, 98, 959, 10.1590/S0074-02762003000700017
Paper, 2005, Comparison of the antiinflammatory effects of Drosera rotundifolia and Drosera madagascariensis in the HET-CAM assay, Phytother. Res., 19, 323, 10.1002/ptr.1666
Rahmoun, 2012, Antibacterial and antifungal activity of lawsone and novel naphthoquinone derivatives, Med. Mal. Infect., 42, 270, 10.1016/j.medmal.2012.05.002
Rauha, 2000, Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds, Int. J. Food Microbiol., 56, 3, 10.1016/S0168-1605(00)00218-X
Salcedo-Vite, 2019, Acinetobacter baylyi ADP1 growth performance and lipid accumulation on different carbon sources, Appl. Microbiol. Biotechnol., 103, 6217, 10.1007/s00253-019-09910-z
Santala, 2016, Bioluminescence-based system for rapid detection of natural transformation, FEMS Microbiol. Lett., 363, 10.1093/femsle/fnw125
Tenaillon, 2010, The population genetics of commensal Escherichia coli, Nat. Rev. Microbiol., 8, 207, 10.1038/nrmicro2298
Vesterlund, 2004, Rapid screening method for the detection of antimicrobial substances, J. Microbiol. Methods, 57, 23, 10.1016/j.mimet.2003.11.014
Vollmer, 2010, Architecture of peptidoglycan: more data and more models, Trends Microbiol., 18, 59, 10.1016/j.tim.2009.12.004
Wang, 2016, Antibacterial activity of juglone against Staphylococcus aureus: from apparent to proteomic, Int. J. Mol. Sci., 17, 965, 10.3390/ijms17060965
Wiegand, 2008, Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances, Nat. Protoc., 3, 163, 10.1038/nprot.2007.521
Wolfender, 2015, Current approaches and challenges for the metabolite profiling of complex natural extracts, J. Chromatogr. A, 1382, 136, 10.1016/j.chroma.2014.10.091