A one-dimensional Keller–Segel equation with a drift issued from the boundary

Comptes Rendus Mathematique - Tập 348 - Trang 629-634 - 2010
Vincent Calvez1, Nicolas Meunier2, Raphael Voituriez3
1Unité de mathématiques pures et appliquées, CNRS UMR 5669, École normale supérieure de Lyon, 46, allée d'Italie, 69364 Lyon cedex 07, France
2MAP5, CNRS UMR 8145, université Paris Descartes, 45, rue des Saints-Pères, 75270 Paris cedex 06, France
3Laboratoire de la matière condensée, CNRS UMR 7600, université Pierre et Marie Curie, 4, place Jussieu, 75255 Paris cedex 05, France

Tài liệu tham khảo

Aubin, 1963, Un théorème de compacité, C. R. Acad. Sci. Paris, 256, 5042 Biler, 1995, Existence and nonexistence of solutions for a model of gravitational interaction of particle III, Colloq. Math., 68, 229, 10.4064/cm-68-2-229-239 Biler, 1998, Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., 59, 845, 10.1137/S0036139996313447 Blanchet, 2009, Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35, 133, 10.1007/s00526-008-0200-7 Blanchet, 2008, Infinite time aggregation for the critical Patlak–Keller–Segel model in R2, Comm. Pure Appl. Math., 61, 1449, 10.1002/cpa.20225 Blanchet, 2006, Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 Calvez, 2006, Volume effects in the Keller–Segel model: energy estimates preventing blow-up, J. Math. Pures Appl., 86, 155, 10.1016/j.matpur.2006.04.002 V. Calvez, L. Corrias, A. Ebde, Blow-up, concentration phenomenon and global existence for the Keller–Segel model in high dimension, submitted for publication V. Calvez, R.J. Hawkins, N. Meunier, R. Voituriez, Analysis of a self-organisation model for spontaneous cell polarization, in preparation Calvez, 2007, Modified Keller–Segel system and critical mass for the log interaction kernel, vol. 429 Cieślak Corrias, 2004, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milano J. of Math., 72, 1, 10.1007/s00032-003-0026-x Dolbeault, 2004, Optimal critical mass in the two-dimensional Keller–Segel model in R2, C. R. Math. Acad. Sci. Paris, 339, 611, 10.1016/j.crma.2004.08.011 Dolbeault, 2009, The two-dimensional Keller–Segel model after blow-up, Discrete Contin. Dyn. Syst., 25, 109, 10.3934/dcds.2009.25.109 Hawkins, 2009, Rebuilding cytoskeleton roads: Active-transport-induced polarization of cells, Phys. Rev. E, 80, 040903, 10.1103/PhysRevE.80.040903 Herrero, 1996, Singularity formation in the one-dimensional supercooled Stefan problem, European J. Appl. Math., 7, 119, 10.1017/S0956792500002266 Herrero, 1996, Chemotactic collapse for the Keller–Segel model, J. Math. Biol., 35, 177, 10.1007/s002850050049 Horstmann, 2003, From 1970 until present: the Keller–Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105, 103 Horstmann, 2001, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12, 159, 10.1017/S0956792501004363 Jäger, 1992, On explosions of solutions to a system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc., 329, 819, 10.2307/2153966 Keller, 1971, Model for chemotaxis, J. Theor. Biol., 30, 225, 10.1016/0022-5193(71)90050-6 Nagai, 1995, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci., 5, 581 Perthame, 2007, Transport Equations in Biology, 10.1007/978-3-7643-7842-4 Velázquez, 2004, Point dynamics in a singular limit of the Keller–Segel model. I. Motion of the concentration regions, SIAM J. Appl. Math., 64, 1198, 10.1137/S0036139903433888 Velázquez, 2004, Point dynamics in a singular limit of the Keller–Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., 64, 1224, 10.1137/S003613990343389X