A numerical study of the hole-tone phenomenon subjected to non-axisymmetric shape perturbations of the jet nozzle

Theoretical and Computational Fluid Dynamics - Tập 29 - Trang 127-153 - 2015
Mikael A. Langthjem1, Masami Nakano2
1Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yamagata, Japan
2Institute of Fluid Science, Tohoku University, Miyagi, Japan

Tóm tắt

This paper presents a numerical analysis of the hole-tone phenomenon (Rayleigh’s bird-call), based on a three-dimensional discrete vortex method. Evaluation of the sound generated by the self-sustained flow oscillations is based on the Powell–Howe theory of vortex sound and a boundary integral/element method. While the fundamental problem can be modeled well under the assumption of axial symmetry, the purpose of employing a full three-dimensional model is to investigate the influence of non-axisymmetric perturbations of the jet on the sound generation (with a view to flow control). Experimentally, such perturbations can be applied at the jet nozzle via piezoelectric or electro-mechanical actuators, placed circumferentially inside the nozzle at its exit. In the mathematical/numerical model, this is simulated by wave motions of a deformable nozzle. Both standing and traveling (rotating) waves are considered. It is shown that a considerable reduction of the sound generation is possible.

Tài liệu tham khảo

Ashurst W.T., Meiburg E.: Three-dimensional shear layers via vortex dynamics. J. Fluid Mech. 189, 87–116 (1988) Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967) Casalino D., Diozzi F., Sannino R., Paonessa A.: Aircraft noise reduction technologies: a biographical review. Aerosp. Sci. Technol. 12, 1–17 (2008) Chanaud R.C., Powell A.: Some experiments concerning the hole and ring tone. J. Acoust. Soc. Am. 37, 902–911 (1965) Conte S.D., de Boor C.: Elementary Numerical Analysis. McGraw-Hill, New York (1980) Cook R.D., Malkus D.S., Plesha M.E.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1989) Cortelezzi L., Karagozian A.R.: On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347–373 (2001) Cottet G.-H., Koumoutsakos P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000) Courant R., Hilbert D.: Methods of Mathematical Physics, Vol II. Wiley, New York (1989) Crighton D.G.: The jet edge-tone feedback cycle; linear theory for the operating stages. J. Fluid Mech. 234, 361–391 (1992) Curle N.: The mechanics of edge-tones. Proc. R. Soc. Lond. A 216, 412–424 (1953) Fukumoto Y., Kaplanski F.: Global time evolution of an axisymmetric vortex ring at low Reynolds numbers. Phys. Fluids 20, 053103 (2008) Grace S.M.: Prediction of low-frequency tones produced by flow through a duct with a gap. J. Sound Vib. 229, 859–878 (2000) Henrywood R.H., Agarwal A.: The aeroacoustics of the steam kettle. Phys. Fluids 25, 107101 (2013) Holger D.K., Wilson T.A., Beavers G.S.: Fluid mechanics of the edgetone. J. Acoust. Soc. Am. 62, 1116–1128 (1977) Holmes P., Lumley J.L., Berkooz G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996) Howe M.S.: Contributions to the theory of aerodynamic sound, with applications to excess jet noise and the theory of the flute. J. Fluid Mech. 71, 625–673 (1975) Howe M.S.: Edge, cavity and aperture tones at very low Mach numbers. J. Fluid Mech. 330, 61–84 (1997) Howe M.S.: Acoustics of Fluid–Structure Interactions. Cambridge University Press, Cambridge (1998) Howe M.S.: Theory of Vortex Sound. Cambridge University Press, Cambridge (2003) Isaacson E., Keller H.B.: Analysis of Numerical Methods. Dover, New York (1994) Kambe T., Minota T.: Acoustic wave radiated by head-on collision of two vortex rings. Proc. R. Soc. Lond. A 386, 277–308 (1983) Kambe T.: Acoustic emissions by vortex motions. J. Fluid Mech. 173, 643–666 (1986) Kambe T.: Vortex sound with special reference to vortex rings: theory, computer simulations, and experiments. Int. J. Aeroacoust. 9, 51–89 (2010) Kasagi N.: Toward smart control of turbulent jet mixing and combustion. JSME Int. J. Ser. B 49, 941–950 (2006) Katz J., Plotkin A.: Low-Speed Aerodynamics. Cambridge University Press, Cambridge (2001) Kawai Y., Terai T.: A numerical method for the calculation of transient acoustic scattering from thin rigid plates. J. Sound Vib. 141, 83–96 (1990) Kellogg O.D.: Foundations of Potential Theory. Dover, New York (1954) Lakkis I., Ghoniem A.F.: Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion. J. Comput. Phys. 184, 435–475 (2003) Lanczos C.: Applied Analysis. Dover, New York (1988) Langthjem, M.A., Nakano, M.: Numerical simulation of the hole-tone feedback cycle based on the discrete vortex method and the acoustic analogy. In: Proceedings of FEDSM’03, 4th ASME-JSME Joint Fluids Engineering Conference, Honolulu, HI (2003) Langthjem M.A., Nakano M.: A numerical simulation of the hole-tone feedback cycle based on an axisymmetric discrete vortex method and Curle’s equation. J. Sound Vib. 288, 133–176 (2005) Langthjem M.A., Nakano M.: Numerical study of the hole-tone feedback cycle based on an axisymmetric formulation. Fluid Dyn. Res. 42, 015008(1-26) (2010) Leonard A.: Computing three-dimensional incompressible flows with vortex elements. Ann. Rev. Fluid Mech. 17, 523–559 (1985) Lighthill M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564–587 (1952) Majda A.J., Bertozzi A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002) Martin J.E., Meiburg E.: Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J. Fluid Mech. 230, 271–318 (1991) Martin J.E., Meiburg E.: Numerical investigation of three-dimensionally evolving jets under helical perturbations. J. Fluid Mech. 243, 457–487 (1992) Matsuura K., Nakano M.: Direct computation of a hole-tone feedback system at very low Mach numbers. J. Fluid Sci. Technol. 6, 548–561 (2011) Matsuura K., Nakano M.: A throttling mechanism sustaining a hole-tone feedback system at very low Mach numbers. J. Fluid Mech. 710, 569–605 (2012) Matsuura K., Nakano M.: Disorganization of a hole tone feedback loop by an axisymmetric obstacle on a downstream end plate. J. Fluid Mech. 757, 908–942 (2014) Meganathan, D., Vakili, E.: An experimental study of acoustic and flow characteristics of hole tones. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nev. AIAA 2006-1015 (2006) Nakano M., Tsuchidoi D., Kohiyama K., Rinoshika A., Shirono K.: Wavelet analysis on behavior of hole-tone self-sustained oscillation of impinging circular air jet subjected to acoustic excitation. J. Vis. Soc. Jpn. 24, 87–90 (2004) (In Japanese) Naudascher E., Rockwell D.: Flow-Induced Vibrations. Dover, New York (2005) Nitsche M., Krasny R.: A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139–161 (1994) Nitsche M.: Self-similar shedding of vortex rings. J. Fluid Mech. 435, 397–407 (2001) Pikovsky A., Rosenblum M., Kurths J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) Powell A.: On the edgetone. J. Acoust. Soc. Am. 33, 395–409 (1961) Powell A.: Theory of vortex sound. J. Acoust. Soc. Am. 36, 177–195 (1964) Powell A.: Lord Rayleigh’s foundations of aeroacoustics. J. Acoust. Soc. Am. 98, 1839–1844 (1995) Rayleigh, Lord: Interference of sound. R. Inst. Proc. xvii, 1–7 (1902); also in: Scientific Papers, Vol. V. Cambridge University Press, Cambridge (1912) Rayleigh Lord: The Theory of Sound, Vol. II. Dover, New York (1945) Rivoalen E., Huberson S.: Numerical simulation of axisymmetric viscous flows by means of particle method. J. Comput. Phys. 152, 1–31 (1999) Rockwell D., Naudascher E.: Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11, 67–94 (1979) Rockwell D.: Oscillations of impinging shear layers. AIAA J. 21, 645–664 (1983) Saffman P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992) Suzuki H., Kasagi N., Suzuki Y.: Active control of an axisymmetric jet with distributed electromagnetic flap actuators. Exp. Fluids 36, 498–509 (2004) Terai T.: On calculation of sound fields around three dimensional objects by integral equation methods. J. Sound Vib. 37, 71–100 (1980) Vaik I., Paal G.: Mode switching and hysteresis in the edge tone. J. Phys. Conf. Ser. 268, 012031 (2011) Wells V.L., Renaut R.A.: Computing aerodynamically generated noise. Ann. Rev. Fluid Mech. 29, 161–199 (1997)