A numerical study of the hole-tone phenomenon subjected to non-axisymmetric shape perturbations of the jet nozzle
Tóm tắt
This paper presents a numerical analysis of the hole-tone phenomenon (Rayleigh’s bird-call), based on a three-dimensional discrete vortex method. Evaluation of the sound generated by the self-sustained flow oscillations is based on the Powell–Howe theory of vortex sound and a boundary integral/element method. While the fundamental problem can be modeled well under the assumption of axial symmetry, the purpose of employing a full three-dimensional model is to investigate the influence of non-axisymmetric perturbations of the jet on the sound generation (with a view to flow control). Experimentally, such perturbations can be applied at the jet nozzle via piezoelectric or electro-mechanical actuators, placed circumferentially inside the nozzle at its exit. In the mathematical/numerical model, this is simulated by wave motions of a deformable nozzle. Both standing and traveling (rotating) waves are considered. It is shown that a considerable reduction of the sound generation is possible.
Tài liệu tham khảo
Ashurst W.T., Meiburg E.: Three-dimensional shear layers via vortex dynamics. J. Fluid Mech. 189, 87–116 (1988)
Batchelor G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967)
Casalino D., Diozzi F., Sannino R., Paonessa A.: Aircraft noise reduction technologies: a biographical review. Aerosp. Sci. Technol. 12, 1–17 (2008)
Chanaud R.C., Powell A.: Some experiments concerning the hole and ring tone. J. Acoust. Soc. Am. 37, 902–911 (1965)
Conte S.D., de Boor C.: Elementary Numerical Analysis. McGraw-Hill, New York (1980)
Cook R.D., Malkus D.S., Plesha M.E.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1989)
Cortelezzi L., Karagozian A.R.: On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347–373 (2001)
Cottet G.-H., Koumoutsakos P.D.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge (2000)
Courant R., Hilbert D.: Methods of Mathematical Physics, Vol II. Wiley, New York (1989)
Crighton D.G.: The jet edge-tone feedback cycle; linear theory for the operating stages. J. Fluid Mech. 234, 361–391 (1992)
Curle N.: The mechanics of edge-tones. Proc. R. Soc. Lond. A 216, 412–424 (1953)
Fukumoto Y., Kaplanski F.: Global time evolution of an axisymmetric vortex ring at low Reynolds numbers. Phys. Fluids 20, 053103 (2008)
Grace S.M.: Prediction of low-frequency tones produced by flow through a duct with a gap. J. Sound Vib. 229, 859–878 (2000)
Henrywood R.H., Agarwal A.: The aeroacoustics of the steam kettle. Phys. Fluids 25, 107101 (2013)
Holger D.K., Wilson T.A., Beavers G.S.: Fluid mechanics of the edgetone. J. Acoust. Soc. Am. 62, 1116–1128 (1977)
Holmes P., Lumley J.L., Berkooz G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)
Howe M.S.: Contributions to the theory of aerodynamic sound, with applications to excess jet noise and the theory of the flute. J. Fluid Mech. 71, 625–673 (1975)
Howe M.S.: Edge, cavity and aperture tones at very low Mach numbers. J. Fluid Mech. 330, 61–84 (1997)
Howe M.S.: Acoustics of Fluid–Structure Interactions. Cambridge University Press, Cambridge (1998)
Howe M.S.: Theory of Vortex Sound. Cambridge University Press, Cambridge (2003)
Isaacson E., Keller H.B.: Analysis of Numerical Methods. Dover, New York (1994)
Kambe T., Minota T.: Acoustic wave radiated by head-on collision of two vortex rings. Proc. R. Soc. Lond. A 386, 277–308 (1983)
Kambe T.: Acoustic emissions by vortex motions. J. Fluid Mech. 173, 643–666 (1986)
Kambe T.: Vortex sound with special reference to vortex rings: theory, computer simulations, and experiments. Int. J. Aeroacoust. 9, 51–89 (2010)
Kasagi N.: Toward smart control of turbulent jet mixing and combustion. JSME Int. J. Ser. B 49, 941–950 (2006)
Katz J., Plotkin A.: Low-Speed Aerodynamics. Cambridge University Press, Cambridge (2001)
Kawai Y., Terai T.: A numerical method for the calculation of transient acoustic scattering from thin rigid plates. J. Sound Vib. 141, 83–96 (1990)
Kellogg O.D.: Foundations of Potential Theory. Dover, New York (1954)
Lakkis I., Ghoniem A.F.: Axisymmetric vortex method for low-Mach number, diffusion-controlled combustion. J. Comput. Phys. 184, 435–475 (2003)
Lanczos C.: Applied Analysis. Dover, New York (1988)
Langthjem, M.A., Nakano, M.: Numerical simulation of the hole-tone feedback cycle based on the discrete vortex method and the acoustic analogy. In: Proceedings of FEDSM’03, 4th ASME-JSME Joint Fluids Engineering Conference, Honolulu, HI (2003)
Langthjem M.A., Nakano M.: A numerical simulation of the hole-tone feedback cycle based on an axisymmetric discrete vortex method and Curle’s equation. J. Sound Vib. 288, 133–176 (2005)
Langthjem M.A., Nakano M.: Numerical study of the hole-tone feedback cycle based on an axisymmetric formulation. Fluid Dyn. Res. 42, 015008(1-26) (2010)
Leonard A.: Computing three-dimensional incompressible flows with vortex elements. Ann. Rev. Fluid Mech. 17, 523–559 (1985)
Lighthill M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564–587 (1952)
Majda A.J., Bertozzi A.L.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)
Martin J.E., Meiburg E.: Numerical investigation of three-dimensionally evolving jets subject to axisymmetric and azimuthal perturbations. J. Fluid Mech. 230, 271–318 (1991)
Martin J.E., Meiburg E.: Numerical investigation of three-dimensionally evolving jets under helical perturbations. J. Fluid Mech. 243, 457–487 (1992)
Matsuura K., Nakano M.: Direct computation of a hole-tone feedback system at very low Mach numbers. J. Fluid Sci. Technol. 6, 548–561 (2011)
Matsuura K., Nakano M.: A throttling mechanism sustaining a hole-tone feedback system at very low Mach numbers. J. Fluid Mech. 710, 569–605 (2012)
Matsuura K., Nakano M.: Disorganization of a hole tone feedback loop by an axisymmetric obstacle on a downstream end plate. J. Fluid Mech. 757, 908–942 (2014)
Meganathan, D., Vakili, E.: An experimental study of acoustic and flow characteristics of hole tones. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, 9–12 January 2006, Reno, Nev. AIAA 2006-1015 (2006)
Nakano M., Tsuchidoi D., Kohiyama K., Rinoshika A., Shirono K.: Wavelet analysis on behavior of hole-tone self-sustained oscillation of impinging circular air jet subjected to acoustic excitation. J. Vis. Soc. Jpn. 24, 87–90 (2004) (In Japanese)
Naudascher E., Rockwell D.: Flow-Induced Vibrations. Dover, New York (2005)
Nitsche M., Krasny R.: A numerical study of vortex ring formation at the edge of a circular tube. J. Fluid Mech. 276, 139–161 (1994)
Nitsche M.: Self-similar shedding of vortex rings. J. Fluid Mech. 435, 397–407 (2001)
Pikovsky A., Rosenblum M., Kurths J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)
Powell A.: On the edgetone. J. Acoust. Soc. Am. 33, 395–409 (1961)
Powell A.: Theory of vortex sound. J. Acoust. Soc. Am. 36, 177–195 (1964)
Powell A.: Lord Rayleigh’s foundations of aeroacoustics. J. Acoust. Soc. Am. 98, 1839–1844 (1995)
Rayleigh, Lord: Interference of sound. R. Inst. Proc. xvii, 1–7 (1902); also in: Scientific Papers, Vol. V. Cambridge University Press, Cambridge (1912)
Rayleigh Lord: The Theory of Sound, Vol. II. Dover, New York (1945)
Rivoalen E., Huberson S.: Numerical simulation of axisymmetric viscous flows by means of particle method. J. Comput. Phys. 152, 1–31 (1999)
Rockwell D., Naudascher E.: Self-sustained oscillations of impinging free shear layers. Ann. Rev. Fluid Mech. 11, 67–94 (1979)
Rockwell D.: Oscillations of impinging shear layers. AIAA J. 21, 645–664 (1983)
Saffman P.G.: Vortex Dynamics. Cambridge University Press, Cambridge (1992)
Suzuki H., Kasagi N., Suzuki Y.: Active control of an axisymmetric jet with distributed electromagnetic flap actuators. Exp. Fluids 36, 498–509 (2004)
Terai T.: On calculation of sound fields around three dimensional objects by integral equation methods. J. Sound Vib. 37, 71–100 (1980)
Vaik I., Paal G.: Mode switching and hysteresis in the edge tone. J. Phys. Conf. Ser. 268, 012031 (2011)
Wells V.L., Renaut R.A.: Computing aerodynamically generated noise. Ann. Rev. Fluid Mech. 29, 161–199 (1997)