A numerical study of the effect of changing compression ratio on the auto-ignition of iso-octane in an RCM
Tài liệu tham khảo
Goldsborough, 2009, A chemical kinetically based ignition delay correlation for iso-octane covering a wide range of conditions including the NTC region, Combust Flame, 156, 1248, 10.1016/j.combustflame.2009.01.018
Minetti, 1996, Comparison of oxidation and autoignition of the two primary reference fuels by rapid compression, Symp (Int) Combust, 26, 747, 10.1016/S0082-0784(96)80283-9
Tanaka, 2003, Two-stage ignition in HCCI combustion and HCCI control by fuels and additives, Combust Flame, 132, 219, 10.1016/S0010-2180(02)00457-1
He, 2007, Experimental investigation of the intermediates of isooctane during ignition, Int J Chem Kinet, 39, 498, 10.1002/kin.20254
Mittal, 2007, A rapid compression machine for chemical kinetics studies at elevated pressures and temperatures, Combust Sci Technol, 179, 10.1080/00102200600671898
Oehlschlaeger, 2004, Shock tube measurements of branched alkane ignition times and OH concentration time histories, Int J Chem Kinet, 36, 67, 10.1002/kin.10173
Walton, 2007, An experimental investigation of iso-octane ignition phenomena, Combust Flame, 150, 246, 10.1016/j.combustflame.2006.07.016
He, 2005, An experimental and modeling study of iso-octane ignition delay times under homogeneous charge compression ignition conditions, Combust Flame, 142, 266, 10.1016/j.combustflame.2005.02.014
Dooley, 2008
Minetti, 1996, Autoignition Delays of a Series of Linear and Branched Chain Alkanes in the Intermediate Range of Temperature, Combust Sci Technol, 113, 179, 10.1080/00102209608935493
Vanhove, 2006, Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel, Combust Flame, 145, 521, 10.1016/j.combustflame.2006.01.001
He, 2006, A rapid compression facility study of OH time histories during iso-octane ignition, Combust Flame, 145, 552, 10.1016/j.combustflame.2005.12.014
Mittal, 2008, Homogeneous charge compression ignition of binary fuel blends, Combust Flame, 155, 431, 10.1016/j.combustflame.2008.05.003
Fieweger, 1997, Self-ignition of S.I. engine model fuels: a shock tube investigation at high pressure, Combust Flame, 109, 599, 10.1016/S0010-2180(97)00049-7
Davidson, 2005, Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures, Proc Combust Inst, 30, 10.1016/j.proci.2004.08.004
Yahyaoui, 2007, Experimental and modelling study of gasoline surrogate mixtures oxidation in jet stirred reactor and shock tube, Proc Combust Inst, 31, 385, 10.1016/j.proci.2006.07.179
Sakai Y, Ozawa H, Ogura T, Miyoshi A, Koshi M, Pitz WJ. Effects of Toluene Addition to Primary Reference Fuel at High Temperature, 2007, p. 2007-01–4104. https://doi.org/10.4271/2007-01-4104.
Kahandawala, 2006, Investigation of kinetics of iso-octane ignition under scramjet conditions, Int J Chem Kinet, 38, 194, 10.1002/kin.20155
Shen, 2008, A shock tube study of iso-octane ignition at elevated pressures: the influence of diluent gases, Combust Flame, 155, 739, 10.1016/j.combustflame.2008.06.001
Park P, Keck J. Rapid Compression Machine Measurements of Ignition Delay Times for PRD Mixtures. SAE International Congress & Exposition 1990;99(SAE paper 900027):11-23.
Bradley D, Lawes M, Materego M. Interpretation of Auto-ignition Delay Times Measured in Different Rapid Compression Machines, 2015.
Goldsborough, 2017, Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena, Prog Energy Combust Sci, 63, 1, 10.1016/j.pecs.2017.05.002
Wadkar C, Chinnathambi P, Toulson E. An Experimental Study on the Factors Affecting Ethanol Ignition Delay Times in a Rapid Compression Machine, 2019, p. 2019-01–0576. https://doi.org/10.4271/2019-01-0576.
Wadkar, 2020, Analysis of rapid compression machine facility effects on the auto-ignition of ethanol, Fuel, 264, 10.1016/j.fuel.2019.116546
Wadkar C, Chinnathambi P, Toulson E. Effect of Changing Compression Ratio on Ignition Delay Times of Iso-Octane in a Rapid Compression Machine, 2020, p. 2020-01–0338. https://doi.org/10.4271/2020-01-0338.
Ezzell, 2019, On the influence of initial conditions and facility effects on rapid compression machine data, Fuel, 245, 368, 10.1016/j.fuel.2019.01.146
Mittal, 2008, Dimethyl ether autoignition in a rapid compression machine: Experiments and chemical kinetic modeling, Fuel Process Technol, 89, 1244, 10.1016/j.fuproc.2008.05.021
Lee, 1998, Rapid compression machines: heat transfer and suppression of corner vortex, Combust Flame, 114, 531, 10.1016/S0010-2180(97)00327-1
Weber, 2011, Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature, Combust Flame, 158, 809, 10.1016/j.combustflame.2011.02.005
Kumar, 2009, Autoignition of n-decane under elevated pressure and low-to-intermediate temperature conditions, Combust Flame, 156, 1278, 10.1016/j.combustflame.2009.01.009
Mittal, 2006, Autoignition of H2/CO at elevated pressures in a rapid compression machine, Int J Chem Kinet, 38, 516, 10.1002/kin.20180
Mittal, 2007, Autoignition of toluene and benzene at elevated pressures in a rapid compression machine, Combust Flame, 150, 355, 10.1016/j.combustflame.2007.04.014
Mittal, 2009, Autoignition of methylcyclohexane at elevated pressures, Combust Flame, 156, 1852, 10.1016/j.combustflame.2009.05.009
Mittal, 2006, Aerodynamics inside a rapid compression machine, Combust Flame, 145, 160, 10.1016/j.combustflame.2005.10.019
Curran, 2002, A comprehensive modeling study of iso-octane oxidation, Combust Flame, 129, 253, 10.1016/S0010-2180(01)00373-X
Mehl M, Pitz WJ, Sjöberg M, Dec JE. Detailed Kinetic Modeling of Low-Temperature Heat Release for PRF Fuels in an HCCI Engine. SAE Technical Papers, 2009. https://doi.org/10.4271/2009-01-1806.
Mehl, 2009
Atef, 2017, A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics, Combust Flame, 178, 111, 10.1016/j.combustflame.2016.12.029
Griffiths, 1993, Fundamental features of hydrocarbon autoignition in a rapid compression machine, Combust Flame, 95, 291, 10.1016/0010-2180(93)90133-N
Healy, 2008, Methane/ethane/propane mixture oxidation at high pressures and at high, intermediate and low temperatures, Combust Flame, 155, 441, 10.1016/j.combustflame.2008.07.003
Gallagher, 2008, A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime, Combust Flame, 153, 316, 10.1016/j.combustflame.2007.09.004
Chinnathambi P, Wadkar C, Toulson E. Impact of CO2 dilution on ignition delay times of iso-octane at 15% and 30% dilution levels in a rapid compression machine. SAE Technical Papers, vol. 2019- April, 2019. https://doi.org/10.4271/2019-01-0569.
Somers, 2013, A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation, Combust Flame, 160, 2291, 10.1016/j.combustflame.2013.06.007
Di, 2014, Effects of buffer gas composition on low temperature ignition of iso-octane and n-heptane, Combust Flame, 161, 2531, 10.1016/j.combustflame.2014.04.014
Zhang, 2016, First-stage ignition delay in the negative temperature coefficient behavior: Experiment and simulation, Combust Flame, 167, 14, 10.1016/j.combustflame.2016.03.002
Wagnon, 2014, Effects of buffer gas composition on autoignition, Combust Flame, 161, 898, 10.1016/j.combustflame.2013.09.022
Zhao, 2013, The role of global and detailed kinetics in the first-stage ignition delay in NTC-affected phenomena, Combust Flame, 160, 2352, 10.1016/j.combustflame.2013.06.009
Wilson, 2016, Application of a multi-zone model for the prediction of species concentrations in rapid compression machine experiments, Combust Flame, 171, 185, 10.1016/j.combustflame.2016.05.018
Goldsborough, 2012, A computationally efficient, physics-based model for simulating heat loss during compression and the delay period in RCM experiments, Combust Flame, 159, 3476, 10.1016/j.combustflame.2012.07.010
Goldsborough, 2013, Methodology to account for multi-stage ignition phenomena during simulations of RCM experiments, Proc Combust Inst, 34, 10.1016/j.proci.2012.05.094
Mittal, 2008, Computational fluid dynamics modeling of hydrogen ignition in a rapid compression machine, Combust Flame, 155, 417, 10.1016/j.combustflame.2008.06.006