A numerical study of nanofluid forced convection in ribbed channels

Applied Thermal Engineering - Tập 37 - Trang 280-292 - 2012
Oronzio Manca1, Sergio Nardini1, Daniele Ricci1
1Dipartimento di Ingegneria Aerospaziale e Meccanica – Seconda Università degli Studi di Napoli, Real Casa dell’Annunziata, Via Roma 29, 81031 Aversa, CE, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bergles, 2000, Some perspectives on enhanced heat transfer, second-generation heat transfer technology, J. Heat Transf., 110, 1082, 10.1115/1.3250612

Webb, 2006

Westphalen, 2006, Heat transfer enhancement, ASHRAE J., 48, 68

Choi, 2009, Nanofluids: from vision to reality through research, J. Heat Transf., 131, 1, 10.1115/1.3056479

Webb, 1991, Advances in shell side boiling of refrigerants, J. Inst. Refrig., 87, 75

Webb, 1988, Shell-side evaporators and condensers used in the refrigeration industry, 559

M.H. Jaber, R.L. Webb, P. Stryker, An experimental investigation of enhanced tubes for steam condensers, ASME Paper (1991) 1–8.

Sunden, 2010, Gas turbine blade tip heat transfer and cooling: a literature survey, Heat Transf. Eng., 31, 527, 10.1080/01457630903425320

Karwa, 2001, Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates, Energy, 26, 161, 10.1016/S0360-5442(00)00062-1

K.B. Muluwork, S.C. Solanky, J.S. Saini, Study of heat transfer and friction in solar air heaters roughened with staggered discrete ribs, Proceedings of the fourth ISHMT-ASME Heat and Mass Transfer Conference 2000, Pune, India, pp. 391–400.

Karwa, 1999, Heat transfer coefficient and friction factor correlations for the transient flow regime in rib-roughened rectangular ducts, Int. J. Heat Mass Transf., 42, 1597, 10.1016/S0017-9310(98)00252-X

Lee, 2001, Computational analysis of heat transfer in turbulent flow past a horizontal surface with a 2-D ribs, Int. Commun. Heat Mass Transf., 26, 161, 10.1016/S0735-1933(01)00223-8

Wang, 2006, Experimental investigation of local heat transfer in a square duct with various-shaped ribs, Int. J. Heat Mass Transf., 43, 759, 10.1007/s00231-006-0190-y

Promvonge, 2008, Thermal performance assessment of turbulent channel flows over different shaped ribs, Int. Commun. Heat Mass Transf., 35, 1327, 10.1016/j.icheatmasstransfer.2008.07.016

Saha, 2010, Thermal and friction characteristics of turbulent flow through rectangular and square ducts with transverse ribs and wire-coil inserts, Exp. Therm. Fluid Sci., 34, 575, 10.1016/j.expthermflusci.2009.11.010

Lee, 1988, Analysis of periodically fully developed turbulent flow and heat transfer by k–ε equation model in artificially roughened annulus, Int. J. Heat Mass Transf., 31, 1797, 10.1016/0017-9310(88)90194-9

Manceau, 2000, Turbulent heat transfer predictions using the model on unstructured meshes, Int. J. Heat Fluid Flow, 21, 320, 10.1016/S0142-727X(00)00016-3

Tafti, 2005, Evaluating the role of subgrid stress modeling in a ribbed duct for the internal cooling of turbine blades, Int. J. Heat Fluid Flow, 26, 92, 10.1016/j.ijheatfluidflow.2004.07.002

Slanciauskas, 2001, Two friendly roles for the turbulent heat transfer enhancement, Int. J. Heat Mass Transf., 44, 2155, 10.1016/S0017-9310(00)00206-4

Liou, 1993, Simulation and measurement of enhanced turbulent heat transfer in a channel with periodic ribs on one principal wall, Int. J. Heat Mass Transf., 36, 507, 10.1016/0017-9310(93)80025-P

Rau, 1998, The effect of periodic ribs on the local aerodynamic and heat transfer performance of a straight cooling channel, J. Turbomach., 120, 368, 10.1115/1.2841415

Ryu, 2007, Analysis of turbulent flow in channels roughened by two-dimensional and three-dimensional blocks. Part I: resistance, Int. J. Heat Fluid Flow, 28, 1098, 10.1016/j.ijheatfluidflow.2006.11.006

Ryu, 2007, Analysis of turbulent flow in channels roughened by two-dimensional and three-dimensional blocks. Part II: heat transfer, Int. J. Heat Fluid Flow, 28, 1112, 10.1016/j.ijheatfluidflow.2006.11.007

Chaube, 2005, Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater, Renew. Energy, 31, 317, 10.1016/j.renene.2005.01.012

Manca, 2010, Numerical investigation of air forced convection in channels with differently shaped transverse ribs, Int. J. Numer. Method Heat Fluid Flow, 21, 618, 10.1108/09615531111135855

Kim, 2010, Optimal design of transverse ribs in tubes for thermal performance enhancement, Energy, 35, 2400, 10.1016/j.energy.2010.02.020

Liu, 2011, Numerical investigation on synthetical performances of fluid flow and heat transfer of semiattached rib-channels, Int. J. Heat Mass Transf., 54, 575, 10.1016/j.ijheatmasstransfer.2010.09.013

Maiga, 2006, Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension, Int. J. Numer. Method Heat Fluid Flow, 16, 275, 10.1108/09615530610649717

Özerinç, 2010, Enhanced thermal conductivity of nanofluids: a state-of-the-art review, Microfluid Nanofluid, 8, 145, 10.1007/s10404-009-0524-4

Yang, 2010, Numerical study of heat transfer enhancement with the use of nanofluids in radial flow cooling system, Int. J. Heat Mass Transf., 53, 5895, 10.1016/j.ijheatmasstransfer.2010.07.045

Li, 2000, Heat transfer enhancement of nanofluids, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3

Trisaksri, 2007, Critical review of heat transfer characteristics of nanofluids, Renew. Sustain. Energy Rev., 11, 512, 10.1016/j.rser.2005.01.010

Godson, 2010, Enhancement of heat transfer using nanofluids – an overview, Renew. Sustain. Energy Rev., 14, 629, 10.1016/j.rser.2009.10.004

Wen, 2009, Review of nanofluids for heat transfer applications, Particuology, 7, 141, 10.1016/j.partic.2009.01.007

Eastman, 2004, Thermal transport in nanofluids, Annu. Rev. Mater. Res., 34, 219, 10.1146/annurev.matsci.34.052803.090621

Cheng, 2009, Nanofluid heat transfer technologies, Recent Pat. Eng., 3, 1, 10.2174/187221209787259875

Ahamed, 2011, A review on exergy analysis of vapor compression refrigeration system, Renew. Sustain. Energy Rev., 15, 1593, 10.1016/j.rser.2010.11.039

Keblinski, 2008, Thermal conductance of nanofluids: is the controversy over?, J. Nanopart. Res., 10, 1089, 10.1007/s11051-007-9352-1

Gherasim, 2011, Heat transfer enhancement and pumping power in confined radial flows using nanoparticle suspensions (nanofluids), Int. J. Therm. Sci., 50, 369, 10.1016/j.ijthermalsci.2010.04.008

Murshed, 2008, Thermophysical and electrokinetic properties of nanofluids – a critical Review, Appl. Therm. Eng., 28, 2109, 10.1016/j.applthermaleng.2008.01.005

Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 1, 10.1063/1.2093936

Kang, 2006, Estimation of thermal conductivity of nanofluids using experimental effective particle volume, Exp. Heat Transf., 19, 181, 10.1080/08916150600619281

Zhang, 2007, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Exp. Therm. Fluid Sci., 31, 593, 10.1016/j.expthermflusci.2006.06.009

Venerus, 2010, Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer applications, Appl. Rheol., 20, 445

Buongiorno, 2006, Convective transport in nanofluids, J. Heat Transf., 128, 240, 10.1115/1.2150834

Sohrabi, 2010, A simple analytical model for calculating the effective thermal conductivity of nanofluids, Heat Transf. – Asian Res., 39, 141, 10.1002/htj.20290

Sitprasert, 2009, A thermal conductivity model for nanofluids including effect of the temperature-dependent interfacial layer, J. Nanopart. Res., 11, 1465, 10.1007/s11051-008-9535-4

Palm, 2009, Heat transfer enhancement with the use of nanofluids in radial flow cooling systems considering temperature dependent properties, Appl. Therm. Eng., 26, 2209, 10.1016/j.applthermaleng.2006.03.014

Feng, 2010, Nanofluid convective heat transfer in a parallel-disk system, Int. J. Heat Mass Transf., 53, 4619, 10.1016/j.ijheatmasstransfer.2010.06.031

Manca, 2011, Numerical study of a confined slot impinging jet with nanofluids, Nanoscale Res. Lett., 6, 1, 10.1186/1556-276X-6-188

Akbarinia, 2011, Critical investigation of heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes, Appl. Therm. Eng., 31, 556, 10.1016/j.applthermaleng.2010.10.017

Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transf., 125, 151, 10.1115/1.1532008

Wen, 2004, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transf., 47, 5181, 10.1016/j.ijheatmasstransfer.2004.07.012

Hwang, 2009, Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime, Int. J. Heat Mass Transf., 52, 193, 10.1016/j.ijheatmasstransfer.2008.06.032

Heris, 2007, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube, Int. J. Heat Fluid Flow, 28, 203, 10.1016/j.ijheatfluidflow.2006.05.001

Williams, 2008, Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Transf., 130, 1, 10.1115/1.2818775

Park, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11, 151, 10.1080/08916159808946559

Maiga, 2004, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices Microstruct., 35, 543, 10.1016/j.spmi.2003.09.012

Fard, 2010, Numerical study of convective heat transfer of nanofluids in a circular tube two-phase model versus single-phase model, Int. Commun. Heat Mass Transf., 37, 91, 10.1016/j.icheatmasstransfer.2009.08.003

Bianco, 2009, Numerical investigation of nanofluids forced convection in circular tubes, Appl. Therm. Eng., 29, 3632, 10.1016/j.applthermaleng.2009.06.019

Maiga, 2005, Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat Fluid Flow, 26, 530, 10.1016/j.ijheatfluidflow.2005.02.004

Izadi, 2009, Numerical study of developing laminar forced convection of a nanofluid in an annulus, Int. J. Therm. Sci., 48, 2119, 10.1016/j.ijthermalsci.2009.04.003

Rostamani, 2010, Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties, Int. Commun. Heat Mass Transf., 37, 1426, 10.1016/j.icheatmasstransfer.2010.08.007

Hamilton, 1962, Thermal conductivity of heterogeneous two component system, Ind. Eng. Chem. Fundam., 1, 187, 10.1021/i160003a005

2006

Manca, 2011, Numerical analysis of water forced convection in channels with differently shaped transverse ribs, J. Appl. Math., 2011

Menter, 1994, Two equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598, 10.2514/3.12149

Rohsenow, 1998

Kreith, 1997