A numerical study of divergence-free kernel approximations
Tài liệu tham khảo
Amodei, 1991, A vector spline approximation, J. Approx. Theory, 67, 51, 10.1016/0021-9045(91)90025-6
Dodu, 2002, Vectorial interpolation using radial-basis-like functions, Comput. Math. Appl., 43, 393, 10.1016/S0898-1221(01)00294-2
Dodu, 2004, Irrotational or divergence-free interpolation, Numer. Math., 98, 477, 10.1007/s00211-004-0541-x
Driscoll, 2002, Interpolation in the limit of increasingly flat radial basis functions, Comput. Math. Appl., 43, 413, 10.1016/S0898-1221(01)00295-4
Driscoll, 2014
Flyer, 2012, A guide to RBF-generated finite differences for nonlinear transport: shallow water simulations on a sphere, J. Comput. Phys., 231, 4078, 10.1016/j.jcp.2012.01.028
Fornberg, 2011, Stable computations with Gaussian radial basis functions, SIAM J. Sci. Comput., 33, 869, 10.1137/09076756X
Fornberg, 2011, Stabilization of RBF-generated finite difference methods for convective PDEs, J. Comput. Phys., 230, 2270, 10.1016/j.jcp.2010.12.014
Fornberg, 2007, A stable algorithm for flat radial basis functions on a sphere, SIAM J. Sci. Comput., 30, 60, 10.1137/060671991
Fornberg, 2004, Stable computation of multiquadric interpolants for all values of the shape parameter, Comput. Math. Appl., 48, 853, 10.1016/j.camwa.2003.08.010
Fornberg, 2004, Some observations regarding interpolants in the limit of flat radial basis functions, Comput. Math. Appl., 47, 37, 10.1016/S0898-1221(04)90004-1
Fornberg, 2007, The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl., 54, 379, 10.1016/j.camwa.2007.01.028
Fuselier, 2008, Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants, Math. Comput., 77, 1407, 10.1090/S0025-5718-07-02096-0
Fuselier, 2009, Error and stability estimates for surface-divergence free RBF interpolants on the sphere, Math. Comput., 78, 2157, 10.1090/S0025-5718-09-02214-5
Fuselier, 2008, Improved stability estimates and a characterization of the native space for matrix-valued RBFs, Adv. Comput. Math., 29, 269, 10.1007/s10444-007-9046-3
Gerbeau, 1997, Spurious velocities in the steady flow of an incompressible fluid subjected to external forces, Int. J. Numer. Methods Fluids, 25, 679, 10.1002/(SICI)1097-0363(19970930)25:6<679::AID-FLD582>3.0.CO;2-Q
Handscomb, 1991
Handscomb, 1993, Local recovery of a solenoidal vector field by an extension of the thin-plate spline technique, Numer. Algorithms, 5, 121, 10.1007/BF02212043
Hirsch, 2007
Kosloff, 1993, A modified Chebyshev pseudospectral method with an O(N−1) time step restriction, J. Comput. Phys., 104, 457, 10.1006/jcph.1993.1044
Larsson, 2005, Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions, Comput. Math. Appl., 49, 103, 10.1016/j.camwa.2005.01.010
Lee, 2007, Convergence of increasingly flat radial basis interpolants to polynomial interpolants, SIAM J. Math. Anal., 39, 537, 10.1137/050642113
Lowitzsch, 2005, Error estimates for matrix-valued radial basis function interpolation, J. Approx. Theory, 137, 238, 10.1016/j.jat.2005.09.008
Lowitzsch, 2005, Matrix-valued radial basis functions: stability estimates and applications, Adv. Comput. Math., 23, 299, 10.1007/s10444-004-1786-8
A.A. Mitrano, divfree-src, 2015, URL: http://dx.doi.org/10.5281/zenodo.15647.
Narcowich, 1994, Generalized Hermite interpolation via matrix-valued conditionally positive definite functions, Math. Comput., 63, 661, 10.1090/S0025-5718-1994-1254147-6
Narcowich, 2007, Divergence-free RBFs on surfaces, J. Fourier Anal. Appl., 13, 643, 10.1007/s00041-006-6903-2
Platte, 2011, How fast do radial basis function interpolants of analytic functions converge?, IMA J. Appl. Math., 31, 1578
Platte, 2005, Polynomials and potential theory for Gaussian radial basis function interpolation, SIAM J. Numer. Anal., 43, 750, 10.1137/040610143
Platte, 2010, Chebfun: a new kind of numerical computing, 69
Platte, 2011, Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Rev., 53, 308, 10.1137/090774707
Schaback, 2005, Multivariate interpolation by polynomials and radial basis functions, Constr. Approx., 21, 293, 10.1007/s00365-004-0585-2
Tolstykh, 2003, On using radial basis functions in a “finite difference mode” with applications to elasticity problems, Comput. Mech., 33, 68, 10.1007/s00466-003-0501-9
Townsend, 2013, An extension of Chebfun to two dimensions, SIAM J. Sci. Comput., 35, C495, 10.1137/130908002
Wendland, 2005, vol. 17
Wright, 2006, Scattered node compact finite difference-type formulas generated from radial basis functions, J. Comput. Phys., 212, 99, 10.1016/j.jcp.2005.05.030
