Thuật toán số dựa trên một loại hàm B-spline căng thẳng mới để giải phương trình Burgers-Huxley

Numerical Algorithms - Tập 82 - Trang 1121-1142 - 2019
N. Alinia1, M. Zarebnia1
1Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran

Tóm tắt

Trong bài báo này, một thuật toán số dựa trên một loại B-spline căng thẳng mới, được gọi là phương pháp B-spline căng thẳng hyperbolic-trigonometric, được áp dụng để giải phương trình Burgers-Huxley. Phương pháp này được tạo ra trên không gian tỏa {sin(tt), cos(tt), sinh(tt), cosh(tt), 1, t,..., tn-?5}, n =?5, trong đó t là tham số căng thẳng. Các thuộc tính của nó tương tự như hầu hết các thuộc tính của các B-spline đa thức thông thường và cũng mang lại một số ưu điểm khác. Do đó, trong bài báo này, chúng tôi áp dụng ba phương pháp gồm phương pháp lượng giác, phương pháp B-spline căng thẳng hyperbolic, và phương pháp B-spline căng thẳng hyperbolic-trigonometric mới của chúng tôi, để giải phương trình Burgers-Huxley. Phân tích hội tụ được thảo luận. Sau đó, chúng tôi sử dụng một số ví dụ số để minh họa độ chính xác và việc thực hiện của thuật toán được đề xuất.

Từ khóa

#thuật toán số #B-spline căng thẳng #phương trình Burgers-Huxley #phân tích hội tụ

Tài liệu tham khảo

Satsuma, J.: Topics in soliton theory and exactly solvable nonlinear equations. In: Ablowitz, M., Fuchssteiner, B., Kruskal, M. (eds.) , pp 255–-262. World Scientific, Singapore (1987) Wang, X.Y., Zhu, Z.S., Lu, Y.K.: Solitary wave solutions of the generalized BurgersHuxley equation. J. Phys. A: Math. Gen. 23, 271–274 (1990) Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952) Fitzhugh, R.: Mathematical models of excitation and propagation in nerve. In: Schwan, H. P. (ed.) Biological Engineering, pp 1–85. McGraw-Hill, New york (1969) Ismail, H.N.A., Raslan, K., Rabboh, A.A.A.: Adomian decomposition method for BurgersHuxley and BurgersFisher equations. Appl. Math. Comput. 159, 291–301 (2004) Javidi, M.: A numerical solution of the generalized Burgers-Huxley equation by spectral collocation method. Appl. Math. Comput. 178, 338–344 (2006) Deng, X.: Traveling wave solutions for the generalized BurgersHuxley equation. Appl. Math. Comput. 204, 733–737 (2008) Dehghan, M., Saray, B.N., Lakestani, M.: Three methods based on the interpolation scaling functions and the mixed collocation finite difference schemes for the numerical solution of the nonlinear generalized BurgersHuxley equation. Math. Comput. Model. 55, 11291142 (2012) Zhou, S., Cheng, X.: A linearly semi-implicit compact scheme for the BurgersHuxley equation. Int. J. Comput. Math. 88, 795804 (2011) Gupta, V., Kadalbajoo, M.K.: A singular perturbation approach to solve BurgersHuxley equation via monotone finite difference scheme on layer adaptive mesh. Commun. Nonlinear Sci. Numer. Simul. 16, 18251844 (2011) Mohanty, R.K., Dai, W., Liu, D.: Operator compact method of accuracy two in time and four in space for the solution of time dependent Burgers-Huxley equation. Numer. Algor. 70(3), 591605 (2015) Molabahramia, A., Khani, F.: The homotopy analysis method to solve the Burgers-Huxley equation. Nonlinear Anal. Real World Appl.10(2), 589600 (2009) Wazwaz, A.M.: Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations. Appl. Math. Comput. 195(2), 754761 (2008) Batiha, B., Noorani, M.S.M., Hashim, I.: Application of variational iteration method to the generalized Burgers-Huxley equation. Chaos Solitons Fractals 36(3), 660663 (2008) Batiha, B., Noorani, M.S.M., Hashim, I.: Numerical simulation of the generalized Huxley equation by Hes variational iteration method. Appl. Math. Comput. 186(2), 13221325 (2007) Efimova, O.Y., Kudryashov, N.A.: Exact solutions of the Burgers-Huxley equation. J. Appl. Math. Mech. 68(3), 413420 (2004) Zhang, J.W.: C-curves, an extension of cubic curves. Comput. Aided Geom. Design 13, 199–217 (1996) Zhang, J.W.: Two different forms of C-B-splines. Comput. Aided Geom. Design 14, 31–41 (1997) Koch, P.E., Lyche, T.: Construction of Exponential Tension B-splines of Arbitrary Order, pp 255–258. Academic Press, New York (1991) Lu, Y.G., Wang, G.Z., Yang, X.N.: Uniform hyperbolic polynomial B-spline curves. Comput. Aided Geom. Design 19, 379–393 (2002) Mainar, E., Peña, J.M.: A basis of C-Bezier splines with optimal properties. Comput. Aided Geom. Design 19, 161–175 (2002) Chen, Q.Y., Wang, G.Z.: A class of Bezier-like curves. Comput. Aided Geom. Design 20, 29–39 (2003) Wang, G.Z., Chen, Q.Y., Zhou, M.H.: NUAT B-spline curves. Comput. Aided Geom. Design 21, 193–205 (2004) Jena, M.K., Shunmugaraj, P., Das, P.C.: A subdivision algorithm for trigonometric spline. Comput. Aided Geom. Design 19, 71–88 (2002) Jena, M.K., Shunmugaraj, P., Das, P.C.: A subdivision scheme for generalizing trigonometric spline surfaces to arbitrary meshes. Comput. Aided Geom. Design 20, 61–77 (2003) Li, Y.J., Wang, G.Z.: Two kinds of B-basis of the algebraic hyperbolic space. J. Zhejiang Univ. Sci. 6, 750–759 (2005) Xu, G., Wang, G.: AHT Bezier curves and NUAHT B-spline curves. J. Comput. Sci. Technol. 22, 597–607 (2007) Wang, G., Fang, M.: Unified and extended form of three types of splines. J. Comput. Appl. Math. 216, 498–508 (2008) Jianzhong, W., Daren, H.: On quartic and quintic interpolation splines and their optimal error bounds. Appl. Numer. Math. 11, 1130–1141 (1982) Wasim, I., Abbas, M., Amin, M.: Hybrid B-Spline collocation method for solving the generalized Burgers-Fisher and Burgers-Huxley equations. Math. Probl. Eng. 2018, 1–18 (2018) Hammad, D.A., El-Azab, M.S.: 2N order compact finite difference scheme with collocation method for solving the generalized Burgers-Huxley and Burgers-Fisher equations. Appl. Math. Comput. 258, 296–311 (2015) Inan, B., Bahadir, A.R.: Numerical solutions of the generalized Burgers-Huxley equation by implicit exponential finite difference method. J. Appl. Math. Stat. Inform. 11, 57–67 (2015) Chen, J.: An effcient multiscale Runge-Kutta Galerkin method for generalized Burgers-Huxley equation. Appl. Math. Sci. 11(30), 1467–1479 (2017) Mittala, R.C., Tripathia, A.: Numerical solutions of generalized BurgersFisher and generalized BurgersHuxley equations using collocation of cubic B-splines. Int. J. Comput. Math. 92(5), 1053–1077 (2015) Bukhari, M., Arshad, M., Batool, S., Saqlain, S.M.: Numerical solution of generalized Burgers-Huxley equation using local radial basis functions. International Journal of Advanced and Applied Sciences 4(5), 1–11 (2017) Singh, B.K., Arora, G., Batool, S., Singh, M.K.: A numerical scheme for the generalized BurgersHuxley equation. Journal of the Egyptian Mathematical Society 24, 629–637 (2016) Bratsos, A.G.: A fourth order improved numerical scheme for the generalized BurgersHuxley equation. Am. J. Comput. Math. 1(3), 152–158 (2011)