A novel star auxetic honeycomb with enhanced in-plane crushing strength
Tài liệu tham khảo
Zhang, 2015, Bioinspired engineering of honeycomb structure – using nature to inspire human innovation, Prog. Mater. Sci., 74, 332, 10.1016/j.pmatsci.2015.05.001
Zhao, 2019, Crashworthiness analysis and design of composite tapered tubes under multiple load cases[J], Compos. Struct., 222, 10.1016/j.compstruct.2019.110920
Huang, 2016, Negative Poisson\s ratio in modern functional materials, Adv. Mater., 10.1002/adma.201601363
Choi, 1992, Non-linear properties of metallic cellular materials with a negative Poisson's ratio, J. Mater. Sci., 27, 10.1007/BF02403846
Scarpa, 2000, On the transverse shear modulus of negative Poisson's ratio honeycomb structures, Fatig. Fract. Eng. Mater. Struct., 23, 717, 10.1046/j.1460-2695.2000.00278.x
Argatov, 2012, On local indentation and impact compliance of isotropic auxetic materials from the continuum mechanics viewpoint, Int. J. Eng. Sci., 54, 42, 10.1016/j.ijengsci.2012.01.010
Coenen, 2011, Mechanisms of failure in the static indentation resistance of auxetic carbon fibre laminates, Phys. Status Solidi, 248, 66, 10.1002/pssb.201083977
Chen, 1996, Micromechanical analysis of dynamic behavior of conventional and negative Poisson's ratio foams, J. Eng. Mater. Technol., 118, 285, 10.1115/1.2806807
Scarpa, 2003, Dynamic properties of high structural integrity auxetic open cell foam, Smart Mater. Struct., 13, 49, 10.1088/0964-1726/13/1/006
Liu, 2016, In-plane dynamic crushing of re-entrant auxetic cellular structure, Mater. Des., 100, 84, 10.1016/j.matdes.2016.03.086
Yang, 2017, Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites, Compos. Struct., 168, 120, 10.1016/j.compstruct.2017.02.034
Evans, 1991, Molecular network design, Nature, 353, 10.1038/353124a0
Lakes, 1987, Foam structures with a negative Poisson's ratio, Science, 235, 1038, 10.1126/science.235.4792.1038
Gibson, 1999
Fu, 2016, Nonlinear shear modulus of re-entrant hexagonal honeycombs under large deformation, Int. J. Solid Struct., 80, 284, 10.1016/j.ijsolstr.2015.11.015
Zhang, 2017, Homogenization of hexagonal and re-entrant hexagonal structures and wave propagation of the sandwich plates with symplectic analysis, Compos. B Eng., 114, 80, 10.1016/j.compositesb.2017.01.048
Fu, 2017, A novel chiral three-dimensional material with negative Poisson's ratio and the equivalent elastic parameters, Compos. Struct., 176, 442, 10.1016/j.compstruct.2017.05.027
Elipe, 2012, Comparative study of auxetic geometries by means of computer-aided design and engineering, Smart Mater. Struct., 21
Scarpa, 2000, Numerical and experimental uniaxial loading on in-plane auxetic honeycombs[J], J. Strain Anal. Eng. Des., 35, 383, 10.1243/0309324001514152
Masters, 1996, Models for the elastic deformation of honeycombs[J], Compos. Struct., 35, 403, 10.1016/S0263-8223(96)00054-2
Theocaris, 1997, Negative Poisson\s ratios in composites with star-shaped inclusions: a numerical homogenization approach, J. Arch. Appl. Mech., 67, 274, 10.1007/s004190050117
Gao, 2018, Theoretical, numerical and experimental analysis of three-dimensional double-V honeycomb, Mater. Des., 139, 380, 10.1016/j.matdes.2017.11.024
Gao, 2019, Crashworthiness analysis of double-arrowed auxetic structure under axial impact loading, Mater. Des., 161, 22, 10.1016/j.matdes.2018.11.013
Hönig, 2002, In-plane dynamic crushing of honeycomb. Part I: crush band initiation and wave trapping[J], Int. J. Mech. Sci., 44, 1665, 10.1016/S0020-7403(02)00060-7
Zhao, 2018, Dynamic crushing of double-arrowed auxetic structure under impact loading, Mater. Des., 160, 527, 10.1016/j.matdes.2018.09.041
Qiao, 2015, Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs, Int. J. Impact Eng., 83, 47, 10.1016/j.ijimpeng.2015.04.005
Qiao, 2015, Analyses on the in-plane impact resistance of auxetic double arrowhead honeycombs, J. Appl. Mech., 82, 10.1115/1.4030007
Zhang, 2015, The influence of cell micro-structure on the in-plane dynamic crushing of honeycombs with negative Poisson's ratio, J. Sandw. Struct. Mater., 17, 26, 10.1177/1099636214554180
Hu, 2018, Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation, Thin-Walled Struct., 131, 373, 10.1016/j.tws.2018.04.020
Qi, 2019, In-plane crushing response of tetra-chiral honeycombs, Int. J. Impact Eng., 130, 247, 10.1016/j.ijimpeng.2019.04.019
Gu, 2018, Experimental study of modulus, strength and toughness of 2D triangular lattices[J], International Journal of Solids and Structures, 152, 207, 10.1016/j.ijsolstr.2018.06.028
Liu, 2009, The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs[J], Int. J. Impact Eng., 36, 98, 10.1016/j.ijimpeng.2008.03.001
Sun, 2016, In-plane compression and behavior and energy absorption of hierarchical triangular lattice structures[J], Mater. Des., 100, 280, 10.1016/j.matdes.2016.03.023
Prawoto, 2012, Seeing auxetic materials from the mechanics point of view: a structural review on the negative Poisson's ratio, Comput. Mater. Sci., 58, 140, 10.1016/j.commatsci.2012.02.012
Chen, 2018, Novel negative Poisson's ratio lattice structures with enhanced stiffness and energy absorption capacity, Materials, 11, 1095, 10.3390/ma11071095
Fu, 2017
Fu, 2017, A novel auxetic honeycomb with enhanced in-plane stiffness and buckling strength, Compos. Struct., 160, 574, 10.1016/j.compstruct.2016.10.090
Li, 2018, Strong re-entrant cellular structures with negative Poisson's ratio, J. Mater. Sci., 53, 3493, 10.1007/s10853-017-1809-8
Wang, 2019, In-plane dynamic crushing behaviors of a novel auxetic honeycomb with two plateau stress regions, Int. J. Mech. Sci., 151, 746, 10.1016/j.ijmecsci.2018.12.009
Wang, 2019, A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance, Compos. Struct., 208, 758, 10.1016/j.compstruct.2018.10.024
Jiang, 2019, Flexural performances of fiber face-sheets/corrugated core sandwich composite structures reinforced by horizontal stiffeners[J], Int. J. Mech. Sci.
Lu, 2003
Zhu, 2018, Modeling for CFRP structures subjected to quasi-static crushing[J], Compos. Struct., 184, 41, 10.1016/j.compstruct.2017.09.001
Zhu, 2019
Santosa, 2000, Experimental and numerical studies of foam-filled sections[J], Int. J. Impact Eng., 24, 509, 10.1016/S0734-743X(99)00036-6
Tan, 2005, Dynamic compressive strength properties of aluminium foams. Part II—'shock’ theory and comparison with experimental data and numerical models, J. Mech. Phys. Solid., 53, 2206, 10.1016/j.jmps.2005.05.003
Zou, 2009, Dynamic crushing of honeycombs and features of shock fronts, Int. J. Impact Eng., 36, 165, 10.1016/j.ijimpeng.2007.11.008
Hu, 2010, Dynamic crushing strength of hexagonal honeycombs, Int. J. Impact Eng., 37, 467, 10.1016/j.ijimpeng.2009.12.001
Ingrole, 2017, Design and modeling of auxetic and hybrid honeycomb structures for in-plane property enhancement[J], Mater. Des., 117, 72, 10.1016/j.matdes.2016.12.067
Wang, 2019, On crashworthiness design of hybrid metal-composite structures[J], Int. J. Mech. Sci.
Zhu, 2020, Comparative study on metal/CFRP hybrid structures under static and dynamic loading[J], Int. J. Impact Eng., 10.1016/j.ijimpeng.2020.103509