A novel sparse reduced order formulation for modeling electromagnetic forces in electric motors
Tóm tắt
Từ khóa
Tài liệu tham khảo
(2015) Paris declaration on electro-mobility and climate change & call to action. https://unfccc.int/media/521376/paris-electro-mobility-declaration.pdf. Accessed 24 Oct 2019
(2019) European energy research alliance - eu projects - batteries europe. https://www.eera-set.eu/eu-projects/batteries-europe/. Accessed 24 Oct 2019
Bai G (2018) Numerical simulation and optimization for electromagnetic noises of permanent magnet synchronous motors in vehicles. J Vibroeng. https://doi.org/10.21595/jve.2017.18720
Bianchi N (2005) Electrical machine analysis using finite elements. CRC Press Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/9781315219295
Chinesta F, Keunings R, Leygue A (2013) The proper generalized decomposition for advanced numerical simulations: a primer. Springer, New York
Cueto E, Gonzalez D, Alfaro I (2016) Proper generalized decompositions: an introduction to computer implementation with Matlab, 1st edn. Springer, New York
Dupont JB, Bouvet P (2012) Multiphysics modelling to simulate the noise of an automotive electric motor. In: 7th international styrian noise, vibration & harshness congress: the European automotive noise conference. SAE International. https://doi.org/10.4271/2012-01-1520
Dupont JB, Bouvet P (2013) Noise radiated by an electrical powertrain: multiphysical simulation. In: CFM2013. CFM 2013
Dupont JB, Saucy H (2019) Noise radiated by electric motors: simulation process and overview of the optimization approaches. Springer, Wiesbaden, pp 107–121. https://doi.org/10.1007/978-3-658-20251-4_7
Gieras JF, Wang CR, Lai JCS (2006) Noise of polyphase electric motors. CRC Press Taylor & Francis Group, Boca Raton. https://doi.org/10.1201/9781420027730
Haas S, Ellermann K (2017) Development and analysis of radial force waves in electrical rotating machines. Technische Mechanik 37(2–5):218–225 (10.24352/UB.OVGU-2017-098)
Ibáñez Pinillo R, Abisset-Chavanne E, Ammar A, González D, Cueto E, Huerta A, Louis Duval J, Chinesta F (2018) A multidimensional data-driven sparse identification technique: the sparse proper generalized decomposition. Complexity 2018:1–11. https://doi.org/10.1155/2018/5608286
Jack AG, Mecrow BC (1990) Methods for magnetically nonlinear problems involving significant hysteresis and eddy currents. IEEE Trans Magn 26(2):424–429. https://doi.org/10.1109/20.106344
Kumar D, Kottalgi S, Sambharam T, Mandloi P (2017) A multiphysics optimization approach to design low noise and light weight electric powertrain noise, vibration and harshness (nvh) prediction of electric powertrain using finite element analysis (fea) and optimization. In: IECON 2017: 43rd Annual Conference of the IEEE Industrial Electronics Society, pp 1692–1697. https://doi.org/10.1109/IECON.2017.8216287
Mazgaonkar N, Chowdhury M, Fernandes LF (2019) Design of electric motor using coupled electromagnetic and structural analysis and optimization. In: SAE Technical Paper. SAE International. https://doi.org/10.4271/2019-01-0937
Meeker DC, Finite element method magnetics, version 4.2 (28feb2018 build) edn. http://www.femm.info
Pile R, Devillers E, Le Besnerais J (2018) Comparison of main magnetic force computation methods for noise and vibration assessment in electrical machines. IEEE Trans Magn 54(7):1–13. https://doi.org/10.1109/TMAG.2018.2828388
Sancarlos A, Cameron M, Abel A, Cueto Elias Duval J, Chinesta F (2020) From rom of electrochemistry to ai-based battery digital and hybrid twin. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09404-6
Sancarlos-González A, Pineda SM, Puche-Panadero R, Sapena-Bañó A, Riera-Guasp M, Martinez-Roman J, Perez-Cruz J, Roger-Folch J (2017) Application of the parametric proper generalized decomposition to the frequency-dependent calculation of the impedance of an ac line with rectangular conductors. Open Phys. https://doi.org/10.1515/phys-2017-0113
Sathyan S, Aydin U, Belahcen A (2020) Acoustic noise computation of electrical motors using the boundary element method. Energies 13(1). https://doi.org/10.3390/en13010245. https://www.mdpi.com/1996-1073/13/1/245
Scholkopf B, Smola A, Muller K (1999) Kernel principal component analysis. In: Burges CJC, Schölkopf B, Smola AJ (eds) Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 327–352
Wasserman L (2018) Topological data analysis. Ann Rev Stat Appl 5(1):501–532. https://doi.org/10.1146/annurev-statistics-031017-100045