A novel scalable intrusion detection system based on deep learning

Soosan Naderi Mighan1, Mohsen Kahani1
1[Computer Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abolhasanzadeh, B.: Nonlinear dimensionality reduction for intrusion detection using auto-encoder bottleneck features. In: 2015 7th Conference on Information and Knowledge Technology (IKT), pp. 1–5. IEEE (2015)

Aljawarneh, S., Aldwairi, M., Yassein, M.B.: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 25, 152–160 (2017)

Alom, Md.Z., Bontupalli, V., Taha, T.M.: Intrusion detection using deep belief networks. In: 2015 National Aerospace and Electronics Conference (NAECON), pp. 339–344. IEEE (2015)

Benaicha, S.E., Saoudi, L., Guermeche, S.E.B., Lounis, O.: Intrusion detection system using genetic algorithm. In: Science and Information Conference (SAI), pp. 564–568. IEEE (2014)

Bijone, M.: A survey on secure network: intrusion detection & prevention approaches. Am. J. Inf. Syst. 4(3), 69–88 (2016)

Brown, J., Anwar, M., Dozier, G.: Intrusion detection using a multiple-detector set artificial immune system. In: 2016 IEEE 17th International Conference on Information Reuse and Integration (IRI), pp. 283–286. IEEE (2016)

Chitrakar, R., Huang, C.: Selection of candidate support vectors in incremental SVM for network intrusion detection. Comput. Secur. 45, 231–241 (2014)

Deshmukh, D.H., Ghorpade, T., Padiya, P.: Intrusion detection system by improved preprocessing methods and naïve bayes classifier using NSL-KDD 99 dataset. In: 2014 International Conference on Electronics and Communication Systems (ICECS), pp. 1–7. IEEE (2014)

Dong, B., Wang, X.: Comparison deep learning method to traditional methods using for network intrusion detection. In: 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), pp. 581–585 (2016)

El-Alfy, E.-S.M., Alshammari, M.A.: Towards scalable rough set based attribute subset selection for intrusion detection using parallel genetic algorithm in mapreduce. Simul. Model. Pract. Theory 64, 18–29 (2016)

Essid, M., Jemili, F.: Combining intrusion detection datasets using Mapreduce. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4724–4728. IEEE (2016)

Fiore, U., Palmieri, F., Castiglione, A., De Santis, A.: Network anomaly detection with the restricted Boltzmann machine. Neurocomputing 122, 13–23 (2013)

Gao, N., Gao, L., Gao, Q., Wang, H.: An intrusion detection model based on deep belief networks. In: 2014 Second International Conference on Advanced Cloud and Big Data (CBD), pp. 247–252. IEEE (2014)

Gouveia, A., Correia, M.: Feature set tuning in statistical learning network intrusion detection. In: 2016 IEEE 15th International Symposium on Network Computing and Applications (NCA), pp. 68–75. IEEE (2016)

Gouveia, A., Correia, M.: A systematic approach for the application of restricted Boltzmann machines in network intrusion detection. In: International Work-Conference on Artificial Neural Networks, Vol. 10305, pp. 432–446. Springer, Berlin (2017)

Gupta, G.P., Kulariya, M.: A framework for fast and efficient cyber security network intrusion detection using Apache Spark. Procedia Comput. Sci. 93, 824–831 (2016)

Han, L.: Using a dynamic k-means algorithm to detect anomaly activities. In: 2011 Seventh International Conference on Computational Intelligence and Security (CIS)

Heaton, J., Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Genet. Program. Evolvable. Mach. 19(1–2), 305–307 (2018)

Hodo, E., Bellekens, X., Hamilton, A., Tachtatzis, C., Atkinson, R.: Shallow and deep networks intrusion detection system: a taxonomy and survey. CoRR, arXiv:1701.02145 (2017)

Information and Irvine Computer Science University of California: KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (1999)

Jakkula, V.: Tutorial on Support Vector Machine (SVM), p. 37. School of EECS, Washington State University (2006)

Kato, K., Klyuev, V.: Development of a network intrusion detection system using apache Hadoop and spark. In: 2017 IEEE Conference on Dependable and Secure Computing, pp. 416–423. IEEE (2017)

Kim, J., Kim, J., Thu, H.L.T., Kim, H.: Long short term memory recurrent neural network classifier for intrusion detection. In: 2016 International Conference on Platform Technology and Service (PlatCon), pp. 1–5. IEEE (2016)

Kuang, F., Weihong, X., Zhang, S.: A novel hybrid KPCA and SVM with GA model for intrusion detection. Appl. Soft Comput. 18, 178–184 (2014)

Kulariya, M., Saraf, P., Ranjan, R., Gupta, G.P.: Performance analysis of network intrusion detection schemes using Apache Spark. In: 2016 International Conference on Communication and Signal Processing (ICCSP), pp. 1973–1977. IEEE (2016)

Laney, D.: 3d data management: controlling data volume, velocity and variety. META Group Res. Note 6(70), 1 (2001)

Li, Y., Ma, R., Jiao, R.: A hybrid malicious code detection method based on deep learning. Methods 9(5), 205–216 (2015)

Li, Z., Li, Y., Xu, L.: Anomaly intrusion detection method based on k-means clustering algorithm with particle swarm optimization. In: 2011 International Conference on Information Technology, Computer Engineering and Management Sciences (ICM), Vol. 2, pp. 157–161. IEEE (2011)

Masarat, S., Taheri, H., Sharifian, S.: A novel framework, based on fuzzy ensemble of classifiers for intrusion detection systems. In: 2014 4th International eConference on Computer and Knowledge Engineering (ICCKE), pp. 165–170. IEEE (2014)

Muda, Z., Yassin, W., Sulaiman, M.N., Udzir, N.I.: Intrusion detection based on k-means clustering and naïve bayes classification. In: 2011 7th International Conference on Information Technology in Asia (CITA 11), pp. 1–6. IEEE (2011)

Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection: support vector machines and neural networks. In: Proceedings of the IEEE International Joint Conference on Neural Networks (ANNIE), St. Louis, MO, pp. 1702–1707 (2002)

Myles, A.J., Feudale, R.N., Liu, Y., Woody, N.A., Brown, S.D.: An introduction to decision tree modeling. J. Chemom. A J. Chemom. Soc. 18(6), 275–285 (2004)

Mighan, S.N., Kahani, M.: Deep learning based latent feature extraction for intrusion detection. In: 26th Iranian Conference on Electrical Engineering (ICEE2018) (2018)

Nazari, Z., Noferesti, M., Jalili, R.: DSCA: an inline and adaptive application identification approach in encrypted network traffic. In: Proceedings of the 3rd International Conference on Cryptography, Security and Privacy, pp. 39–43. ACM (2019)

Rathore, M.M., Ahmad, A., Paul, A.: Real time intrusion detection system for ultra-high-speed big data environments. J. Supercomput. 72(9), 3489–3510 (2016)

Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A., Hassanien, A.E.: Hybrid intelligent intrusion detection scheme. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing in Industrial Applications. Advances in Intelligent and Soft Computing, vol. 96, pp. 293–303. Springer, Berlin (2011)

Shiravi, A., Shiravi, H., Tavallaee, M., Ghorbani, A.A.: Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Comput. Secur. 31(3), 357–374 (2012)

Siddique, K., Akhtar, Z., Lee, H., Kim, W., Kim, Y.: Toward bulk synchronous parallel-based machine learning techniques for anomaly detection in high-speed big data networks. Symmetry 9(9), 197 (2017)

Soheily-Khah, S., Marteau, P.-F., échet, N.: Intrusion detection in network systems through hybrid supervised and unsupervised mining process a detailed case study on the ISCX benchmark dataset. In: 2018 1st International Conference on Data Intelligence and Security (ICDIS). IEEE (2017)

Stallings, W.: Cryptography and Network Security: Principles and Practice. Pearson, Upper Saddle River (2017)

Thaseen, I.S., Kumar, Ch.A.: Intrusion detection model using fusion of PCA and optimized SVM. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 879–884. IEEE (2014)

UNB-ISCX: NSL KDD Dataset. http://www.unb.ca/research/iscx/dataset/iscx-NSL-KDD-dataset.html (2009)

Wang, B., Zheng, Y., Lou, W., Hou, Y.T.: Ddos attack protection in the era of cloud computing and software-defined networking. Comput. Netw. 81, 308–319 (2015)

Wang, Y., Cai, W., Wei, P.: A deep learning approach for detecting malicious Javascript code. Secur. Commun. Netw. 9(11), 1520–1534 (2016)

Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neurocomputing 184, 232–242 (2016)

Wang, Z.: The Applications of Deep Learning on Traffic Identification. BlackHat USA (2015)

Watson, G.: A Comparison of Header and Deep Packet Features When Detecting Network Intrusions. Technical Report (2018)

Wu, S.X., Banzhaf, W.: The use of computational intelligence in intrusion detection systems: a review. Appl. Soft Comput. 10(1), 1–35 (2010)

Zikopoulos, P., Deroos, D., Parasuraman, K., Deutsch, T., Giles, J., Corrigan, D.: Harness the Power of Big Data: The IBM Big Data Platform. McGraw-Hill, New York (2013)

Zuech, R., Khoshgoftaar, T.M., Wald, R.: Intrusion detection and big heterogeneous data: a survey. J. Big Data 2(1), 3 (2015)