A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure*

Chinese Physics B - Tập 30 Số 2 - Trang 024207 - 2021
Xiangxian Wang1, Jiankai Zhu1, Yueqi Xu1, Yunping Qi2, Liping Zhang1, Hua Yang1, Zao Yi3
1School of Science, Lanzhou University of Technology, Lanzhou 730050, China
2College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
3Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China

Tóm tắt

A novel complementary grating structure is proposed for plasmonic refractive index sensing due to its strong resonance at near-infrared wavelength. The reflection spectra and the electric field distributions are obtained via the finite-difference time-domain method. Numerical simulation results show that multiple surface plasmon resonance modes can be excited in this novel structure. Subsequently, one of the resonance modes shows appreciable potential in refractive index sensing due to its wide range of action with the environment of the analyte. After optimizing the grating geometric variables of the structure, the designed structure shows the stable sensing performance with a high refractive index sensitivity of 1642 nm per refractive index unit (nm/RIU) and the figure of merit of 409 RIU−1. The promising simulation results indicate that such a sensor has a broad application prospect in biochemistry.

Từ khóa


Tài liệu tham khảo

Gao, 2020, J. Electron. Mater., 49, 5248, 10.1007/s11664-020-08243-2

Guan, 2020, 10.1080/10667857.2020.1782062

Yan, 2019, Desalin. Water Treat., 170, 349, 10.5004/dwt.2019.24747

Yu, 2020, Renew. Energy., 158, 227, 10.1016/j.renene.2020.05.142

Liu, 2019, Nanotechnology, 30, 10.1088/1361-6528/ab109d

Ge, 2020, J. Magn. Magn. Mater., 500, 10.1016/j.jmmm.2019.166367

Guo, 2020, J. Opt., 22, 10.1088/2040-8986/ab6b86

He, 2020, IEEE Sens. J., 20, 1801, 10.1109/JSEN.7361

Barnes, 2003, Nature, 424, 824, 10.1038/nature01937

Zhang, 2020, IEEE Access., 8, 10.1109/Access.6287639

Liu, 2018, Plasmonics, 13, 779, 10.1007/s11468-017-0572-7

Wang, 2020, Results Phys., 18, 10.1016/j.rinp.2020.103240

Wang, 2020, Opt. Quantum Electron., 52, 238, 10.1007/s11082-020-02360-2

Wu, 2020, Phys. Lett. A., 384, 10.1016/j.physleta.2020.126544

Wang, 2020, Results Phys., 17, 10.1016/j.rinp.2020.103175

Im, 2014, Nat. Biotechnol., 32, 490, 10.1038/nbt.2886

Coskun, 2014, Sci. Rep., 4, 6789, 10.1038/srep06789

Guner, 2017, Sensors Actuators B Chem., 239, 571, 10.1016/j.snb.2016.08.061

Aspnes, 1983, Phys. Rev. B, 27, 985, 10.1103/PhysRevB.27.985

Malitson, 1965, J. Opt. Soc. Am., 55, 1205, 10.1364/JOSA.55.001205

Johnson, 1972, Phys. Rev. B., 6, 4370, 10.1103/PhysRevB.6.4370

Cao, 2019, Sensors (Switzerland), 19, 405, 10.3390/s19020405

Wang, 2019, Chin. Phys. B., 28, 10.1088/1674-1056/28/4/044201

Zhu, 2020, Photonic Sensors, 10, 375, 10.1007/s13320-020-0598-x

Chen, 2018, J. Light. Technol., 36, 3481, 10.1109/JLT.50

Zhu, 2020, Chin. Phys. B, 29, 10.1088/1674-1056/abb229

Chen, 2018, Opt. Mater. Express., 8, 342, 10.1364/OME.8.000342

Chen, 2018, IEEE Photonics Technol. Lett., 30, 728, 10.1109/LPT.2018.2814216

Li, 2019, Appl. Phys. Express., 12, 10.7567/1882-0786/ab24af

Qi, 2020, Results Phys., 16, 10.1016/j.rinp.2020.103012

Qi, 2020, Chin. Phys. B, 29, 10.1088/1674-1056/ab888c

Abutoama, 2015, Opt. Express, 23, 10.1364/OE.23.028667