A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations

W. M. Abd-Elhameed1, Y. H. Youssri2, E. H. Doha2
1Department of Mathematics, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
2Department of Mathematics, Faculty of Science, Cairo University, Giza, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods in fluid dynamics. Springer, New York (1988)

Fornberg, B.: A practical guide to pseudospectral methods. Cambridge University Press, Cambridge (1998)

Peyret, R.: Spectral methods for incompressible viscous flow. Springer, New York (2002)

Trefethen, L.N.: Spectral methods in MATLAB. SIAM, Philadelphia (2000)

Gottlieb, D., Hesthaven, J.S.: Spectral methods for hyperbolic problems. Comp. Appl. Math. 128, 83–131 (2001)

Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comp. 247, 30–46 (2014)

Guo B.-Y., Yan J.-P.: Legendre–Gauss collocation method for initial value problems of second order ordinary differential equations. Appl. Numer. Math. 59, 1386–1408 (2009)

Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term timespace fractional partial differential equations. J. Comp. Phys. 281, 876–895 (2015)

Doha, E.H., Abd-Elhameed, W.M.: Effcient spectral ultraspherical-dual-PetrovGalerkin algorithms for the direct solution of (2n+1)th-order linear differential equations. Math. Comput. Simulat. 79, 3221–3242 (2009)

Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: Efficient spectral-Petrov–Galerkin methods for the integrated forms of third- and fifth-order elliptic differential equations using general parameters generalized Jacobi polynomials. Appl. Math. Comput. 218, 7727–7740 (2012)

Doha, E.H., Abd-Elhameed, W.M., Youssri, Y.H.: Efficient spectral-Petrov–Galerkin methods for third- and fifth-order differential equations using general parameters generalized Jacobi polynomials. Quaest. Math. 36, 15–38 (2013)

Doha, E.H., Abd-Elhameed, W.M., Bhrawy, A.H.: New spectral-Galerkin algorithms for direct solution of high even-order differential equations using symmetric generalized Jacobi polynomials. Collect. Math. 64(3), 373–394 (2013)

Abd-Elhameed W. M.: Some algorithms for solving third-order boundary value problems using novel operational matrices of generalized Jacobi polynomials. Abs. Appl. Anal., vol 2015, Article ID 672703, p. 10

Yu, C.C., Heinrich, J.C.: Petrov–Galerkin methods for the time dependent convective transport equation. Int. J. Num. Mech. Eng. 23, 883–901 (1986)

Doha, E.H., Abd-Elhameed, W.M.: Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials. SIAM J. Sci. Comput. 24, 548–571 (2006)

Doha, E.H., Abd-Elhameed, W.M., Bassuony, M.A.: New algorithms for solving high even-order differential equations using third and fourth Chebyshev–Galerkin methods. J. Comput. Phys. 236, 563–579 (2013)

Abd-Elhameed, W.M.: On solving linear and nonlinear sixth-order two point boundary value problems via an elegant harmonic numbers operational matrix of derivatives. CMES Comp. Model. Eng. Sci. 101(3), 159–185 (2014)

Doha, E.H., Abd-Elhameed, W.M., Bhrawy, A.H.: Efficient spectral ultraspherical-Galerkin algorithms for the direct solution of 2nth-order linear differential equations. Appl. Math. Model. 33, 1982–1996 (2009)

Bratu, G.: Sur les quations intgrales non linaires. Bull. Soc. Math. France 43, 113–142 (1914)

Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Trans. Amer. Math. Soc. Ser. 2, 295–381 (1963)

Aregbesola, Y.A.S.: Numerical solution of Bratu problem using the method of weighted residual. Electron. J. South. Afr. Math. Sci. 3, 1–7 (2003)

Hassan, I., Erturk, V.: Applying differential transformation method to the one-dimensional planar Bratu problem. Int. J. Contemp. Math. Sci. 2, 1493–1504 (2007)

He, J.H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006)

Li, S., Liao, S.: An analytic approach to solve multiple solutions of a strongly nonlinear problem. Appl. Math. Comput. 169, 854–865 (2005)

Mounim, A., de Dormale, B.: From the fitting techniques to accurate schemes for the Liouville–Bratu–Gelfand problem. Numer. Meth. Part. Diff. Eq. 22, 761–775 (2006)

Syam, M., Hamdan, A.: An efficient method for solving Bratu equations. Appl. Math. Comput. 176, 704–713 (2006)

Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166, 652–663 (2005)

Abbasbandy, S., Hashemi M.S., Liu C.-S.: The Lie-group shooting method for solving the Bratu equation. Appl. Math. Comput. 16, 4238–4249 (2011)

Caglar, H., Caglar, N., Özer M., Valaristos A., Anagnostopoulos A.N.: B-spline method for solving Bratu’s problem. Int. J. Comput. Math. 87(8), 1885–1891 (2010)

Khuri, S.A.: A new approach to Bratu’s problem. Appl. Math. Comput. 147, 131–136 (2004)

Deeba, E., Khuri, S.A., Xie, S.: An algorithm for solving boundary value problems. J. Comput. Phys. 159, 125–138 (2000)

Boyd, P.J.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553–5565 (2011)

Adams, R.A., Fournier, J.F.: Sobolev spaces, pure and applied mathematics series. Academic Press, New York (2003)

Mohsen, A., El-Gamel, M.: On the Galerkin and collocation methods for two-point boundary value problems using sinc bases. Comput. Math. Appl. 56, 930–941 (2008)

Natesan, S., Ramanujam, N.: Shooting method for the solution of singularly perturbed two-point boundary-value problems having less severe boundary layer. Appl. Math. Comput. 133, 623–641 (2002)