Thuật toán tham lam lặp mới để phát hiện cộng đồng trong mạng phức tạp

Social Network Analysis and Mining - Tập 10 - Trang 1-17 - 2020
Wenquan Li1, Qinma Kang1, Hanzhang Kong1, Chao Liu1, Yunfan Kang2
1School of Mechanical, Electrical and Information Engineering, Shandong University, Weihai, China
2Department of Computer Science and Engineering, University of California, Riverside, Riverside, USA

Tóm tắt

Cấu trúc cộng đồng là một trong những đặc tính quan trọng nhất trong các mạng phức tạp. Việc phát hiện các cộng đồng như vậy đóng một vai trò quan trọng trong nhiều ứng dụng khác nhau như chia sẻ và truyền thông tin, khuyến nghị và phân loại. Trong bài báo này, chúng tôi đề xuất một thuật toán tham lam lặp mới để phát hiện các cộng đồng trong mạng phức tạp. Thuật toán dựa trên một quy trình lặp lại kết hợp giữa một giai đoạn phá hủy và một giai đoạn tái cấu trúc. Trong giai đoạn phá hủy, thuật toán phá hủy chỉ số cộng đồng của một tỷ lệ nhất định các nút có đóng góp mô-đun thấp hơn. Trong giai đoạn tái cấu trúc, các chỉ số cộng đồng của chúng được tái cấu trúc bằng cách sử dụng phương pháp xây dựng Louvain nổi tiếng. Một quy trình tìm kiếm tại chỗ có thể được áp dụng sau giai đoạn tái cấu trúc để cải thiện hiệu suất của thuật toán. Các thí nghiệm trên các mạng được tạo ra trên máy tính và mạng thực cho thấy thuật toán của chúng tôi rất hiệu quả và có tính cạnh tranh so với một số phương pháp hiện đại.

Từ khóa

#cấu trúc cộng đồng #mạng phức tạp #thuật toán tham lam #sự tái cấu trúc #phương pháp Louvain

Tài liệu tham khảo

Agarwal G, Kempe D (2008) Modularity-maximizing graph communities via mathematical programming. Eur Phys J B 66:409–418 Asmi K, Lotfi D, El Marraki M (2017) Large-scale community detection based on a new dissimilarity measure. Soc Netw Anal Min 7:17. https://doi.org/10.1007/s13278-017-0436-3 Baird D, Ulanowicz RE (1989) The seasonal dynamics of the Chesapeake bay ecosystem. Ecol Monogr 59:329–364. https://doi.org/10.2307/1943071 Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech 2008:155–168 Boettcher S, Percus AG (2001) Optimization with extremal dynamics. Phys Rev Lett 86:5211–5214. https://doi.org/10.1103/PhysRevLett.86.5211 Brandes U, Delling D, Gaertler M, Gorke R, Hoefer M, Nikoloski Z, Wagner D (2007) On modularity clustering. IEEE Trans Knowl Data Eng 20:172–188 Cao C, Ni Q, Zhai Y (2015) A novel community detection method based on discrete particle swarm optimization algorithms in complex networks. In: Evolutionary computation, pp 171–178 Chaabani Y, Akaichi J (2017) Meaningful communities detection in medias network. Soc Netw Anal Min 7:11. https://doi.org/10.1007/s13278-017-0430-9 Clauset A, Newman ME, Moore C (2004) Finding community structure in very large networks. Phys Rev E Stat Nonlinear Soft Matter Phys 70:066111 Danon L, Díazguilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech 2005:09008 Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E Stat Nonlinear Soft Matter Phys 72:027104 Fanjul-Peyro L, Ruiz R (2010) Iterated greedy local search methods for unrelated parallel machine scheduling. Eur J Oper Res Int J 207:55–69. https://doi.org/10.1016/j.ejor.2010.03.030 Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174 Ghalmane Z, Hassouni ME, Cherifi H (2019) Immunization of networks with non-overlapping community structure. Soc Netw Anal Min 9:45. https://doi.org/10.1007/s13278-019-0591-9 Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826. https://doi.org/10.1073/pnas.122653799 Guimerà R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895 Guimerã R, Danon L, Dã-Az-Guilera A, Giralt F, Arenas A (2003) Self-similar community structure in a network of human interactions. Phys Rev E Stat Nonlinear Soft Matter Phys 68:065103 Kang Q, He H, Song H (2011) Task assignment in heterogeneous computing systems using an effective iterated greedy algorithm. J Syst Softw 84:985–992 Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E Stat Nonlinear Soft Matter Phys 80:056117 Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E Stat Nonlinear Soft Matter Phys 78:046110 Liu X, Wang WJ, He DX, Jiao PG, Jin D, Cannistraci CV (2017) Semi-supervised community detection based on non-negative matrix factorization with node popularity. Inf Sci 381:304–321. https://doi.org/10.1016/j.ins.2016.11.028 Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM (2003) The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations: can geographic isolation explain this unique trait? Behav Ecol Sociobiol 54:396–405 Mrvar A, Batagelj V (2006) Example data sets released with the Pajek software. http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm. Accessed 26 June 2018 Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98:404–409. https://doi.org/10.1073/pnas.021544898 Newman ME (2004) Fast algorithm for detecting community structure in networks. Phys Rev E Stat Nonlinear Soft Matter Phys 69:066133 Newman ME (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E Stat Nonlinear Soft Matter Phys 74:036104 Newman MEJ (2013) Network data form Mark Newman’s homepage. http://www-personal.umich.edu/~mejn/netdata. Accessed 19 Apr 2018 Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E. https://doi.org/10.1103/PhysRevE.69.026113 Noack A, Rotta R (2009) Multi-level algorithms for modularity clustering. In: International symposium on experimental algorithms, pp 257–268 Pagnozzi F (2017) An iterated greedy algorithm with optimization of partial solutions for the makespan permutation flowshop problem. Elsevier, Amsterdam Pan QK, Ruiz R (2014) An effective iterated greedy algorithm for the mixed no-idle permutation flowshop scheduling problem. Omega Int J Manag Sci 44:41–50. https://doi.org/10.1016/j.omega.2013.10.002 Pons P, Latapy M (2005) Computing communities in large networks using random walks. In: Yolum P, Gungor T, Gurgen F, Ozturan C (eds) Computer and information sciences—Iscis 2005, proceedings. Lecture notes in computer science, vol 3733. Springer, Berlin, pp 284–293 Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E Stat Nonlinear Soft Matter Phys 76:036106. https://doi.org/10.1103/PhysRevE.76.036106 Ranjbar A, Maheswaran M (2014) Using community structure to control information sharing in online social networks. Comput Commun 41:11–21 Rossi RA, Ahmed NK, AAAI (2015) The network data repository with interactive graph analytics and visualization. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 105:1118–1123 Rotta R, Noack A (2011) Multilevel local search algorithms for modularity clustering. J Exp Algorithm 16:2(3) Ruiz R, Stutzle T (2007) A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur J Oper Res Int J 177:2033–2049. https://doi.org/10.1016/j.ejor.2005.12.009 Said A, Abbasi RA, Maqbool O, Daud A, Aljohani NR (2018) CC-GA: a clustering coefficient based genetic algorithm for detecting communities in social networks. Appl Soft Comput 63:59–70. https://doi.org/10.1016/j.asoc.2017.11.014 Sanchez-Oro J, Duarte A (2018) Iterated greedy algorithm for performing community detection in social networks. Future Gener Comput Syst 88:785–791. https://doi.org/10.1016/j.future.2018.06.010 Shi C, Wang Y, Wu B, Zhong C (2009) A new genetic algorithm for community detection. In: Complex sciences, first international conference, complex 2009, Shanghai, China, February 23–25, 2009. Revised papers, 2009, pp 1298–1309 Stutzle T (2006) Iterated local search for the quadratic assignment problem. Eur J Oper Res Int J 174:1519–1539. https://doi.org/10.1016/j.ejor.2005.01.066 Tchuente D, Canut M-F, Jessel N, Peninou A, Sèdes F (2013) A community-based algorithm for deriving users’ profiles from egocentrics networks: experiment on Facebook and DBLP. Soc Netw Anal Min 3:667–683. https://doi.org/10.1007/s13278-013-0113-0 Wang RS, Zhang S, Wang Y, Zhang XS, Chen L (2008) Clustering complex networks and biological networks by nonnegative matrix factorization with various similarity measures. Neurocomputing 72:134–141 Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442 Wellman B (2005) The development of social network analysis: a study in the sociology of science, vol 27. Linton C. Freeman Social Networks, Vancouver, pp 275–282 Yang J, Leskovec J (2012) Defining and evaluating network communities based on ground-truth. Knowl Inf Syst 42:181–213 Yang Z, Algesheimer R, Tessone CJ (2017) A comparative analysis of community detection algorithms on artificial networks (vol 6, 30750, 2017). Sci Rep 7:2. https://doi.org/10.1038/srep46845 Ye Z, Hu S, Yu J (2008) Adaptive clustering algorithm for community detection in complex networks. Phys Rev E Stat Nonlinear Soft Matter Phys 78:046115 Zachary WW (1977) An information flow model for conflict and fission in small groups. J Anthropol Res 33:452–473