A novel improved deep convolutional neural network model for medical image fusion
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shu-Tao, Li, Xu-Dong, Kang, Leyuan, Fang, et al.: Pixel-level image Lusion; a survey Fusion of the state of the art. Inf. Fusion 33, 100–112 (2017)
Li, H., Manjunath, B., Multisensor, S.M.: Image Fsion using for the wavelet transform. Graph Models Image Process 57(3), 235–245 (1995)
Lewis, J.J., Callaghan, R.J., Nikolov, S.G., et al.: Pixel-and region-based image fusion with complex wavelets. Inf. Fusion 8(2), 119–130 (2007)
Liu, Y., Liu, S., Wang, Z.: A general framework for image fusion based on multrseale transform and sparse representation. Inf. Fusion 24, 147–164 (2015)
Easley, U., Labate, D., Lim, W.Q.: Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 25(1), 25–46 (2008)
Li, S., Yang, B., Hu, J.: Performance comparison of different mufti-resolution transforms for image fusion. Inf. Fusion 12(2), 74–84 (2011)
Yan-Ming, Guo, Liu, Yu., Oerlemans, A., et al.: Deep learning for visual understanding; a review. Neurocomputing 187, 27–48 (2016)
Hong, L., Fang, L., Shu-Yuan, Y., et al.: Remote sensing image fusion based on deep support value learning networks. Chin. J. Comput. 39(8), 1583–1596 (2016)
Fan, L., Ze-Hua, C., Jing, C.: A new multi-Locus image fusion method based on deep neural network model. J. Shandong Univ. (Eng. Sci.) 46(3), 7–13 (2016)
Ng, W.W.Y., Zeng, U., Zhang, J., et al.: Dual autoencoders features for imbalance classification problem. Pattern Recognit. 60, 875–889 (2016)
Gehring, J., Miao, Y., Metze, F., et al.: Extracting deep bottleneck features using stacked auto-encoders. In: Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver, Canada, pp. 3377–3381 (2013)
Zhao, Z., Jiao, I., Zhao, J., et al.: Discriminant deep belief network for high-resolution SAR image classification. Pattern Recognit. 61, 686–701 (2017)
Krizhevsky, A., Sutskever, I., Hinton, U.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems. Nevada, USA, pp. 1097–1105 (2012)
Zabalza, J., Ren, J., Zheng, J., et al.: Novel segmented stacked autoencoder for effective dimensionality reduction and feature extraction in hyperspectral imaging. Neurocomputing 185, 1–10 (2016)
Jiao, L.-C., Yang, S.-Y., Liu, F., et al.: Sevent years beyond neural networks: retrospect and prospect. Chin. J. Comput. 39(8), 1697–1716 (2016)
Kingsbury, N.: A dual-tree complex wavelet transform with improved orthogonality and symmetry properties. In: Proceedings of the International Conference on Image Processing. Vancouver, Canada, vol. 12, no. 2, pp. 375–378 (2000)
Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)
He, K., Zhang, X., Ren, S., et al.: Delving deep into rectifiers Surpassing humarrlevel performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision. Santiago, Chile, pp. 1026–1034 (2015)
Russakovsky, O., Deng, J., Su, H., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–262 (2015)
Bengio, Y.: Practical recommendations for gradient-based training of deep architectures. In: Proceedings of the Neural Networks: Tricks of the Trade. Berlin, Germany, pp. 437–478 (2012)
Shi, J., Zhou, S., Liu, X., et al.: Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing 19(4), 87–94 (2016)
He, K.-M., Zhang, X.-Y., Ren, S., et al.: Deep residual learning for image recognition. arXiv:151.03385 (2015)
Kong, W., Wang, B., Lei, Y.: Technique for infrared and visible image fusion based on non-subsampled shearlet transform and spiking cortical model. Infrared Phys. Technol. 71, 87–98 (2015)
Smith, E.P.U., Pham, I.T., Venzor, U.M., et al.: HgCdTe focal plane arrays for dual-color mid-and long-wavelength infrared detection. J. Electron. Mater. 33(6), 509–516 (2004)