A novel hybrid ultrafast shape descriptor method for use in virtual screening
Tóm tắt
Từ khóa
Tài liệu tham khảo
World Anti-Doping Agency (WADA): Stock Exchange Tower, 800 Place Victoria (Suite 1700), PO Box 120, Montreal (Quebec) H4Z 1B7, Canada.
Cannon EO, Bender A, Palmer DS, Mitchell JBO: Chemoinformatics-based Classification of Prohibited Substances Employed for Doping in Sport. J Chem Inf Model. 2006, 46: 2369-2380. 10.1021/ci0601160.
Cannon EO, Mitchell JBO: Classifying the World Anti-Doping Agency's 2005 Prohibited List Using the Chemistry Development Kit Fingerprint. Lecture Notes in Bioinformatics. 2006, 4216: 173-182. [http://www.springerlink.com/content/vp57306u71187215/?p=6ed67ab6c18d4316baf625180f98529d&pi=16]
Kontaxakis SGCM, (Ed): A Neural Network System for Doping Detection in Athletes. Proceedings of the 4th International Conference on Technology and Automation: October, Thessaloniki, Greece. 2002
Johnson AM, Maggiora GM: Concepts and applications of molecular similarity. 1990, New York: Wiley
Leach AR, Gillet VJ: An Introduction to Chemoinformatics. 2003, Dordrecht: Kluwer
Downs GM, Willett P, Fisanick W: Similarity Searching and Clustering of Chemical-Structure Databases Using Molecular Property Data. J Chem Inf Comput Sci. 1994, 34: 1094-1102. 10.1021/ci00021a011.
Estrada E, Uriarte E: Recent Advances on the Role of Topological Indices in Drug Discovery Research. Curr Med Chem. 2001, 8: 1573-1588.
Mason JS, Good AC, Martin EJ: 3-D pharmacophores in drug discovery. Curr Pharm Des. 2001, 7: 567-597. 10.2174/1381612013397843.
Elsevier MDL: 2440 Camino Ramon, Suite 300, San Ramon, CA. 94583
Daylight Chemical Information Systems Inc.: Daylight Headquarters, Daylight Chemical Information Systems, Inc. 120 Vantis – Suite 550 – Aliso Viejo, CA. 92656
Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A: Comparison of topological descriptors for similarity-based virtual screening using multiple bioactive reference structures. Org Biomol Chem. 2004, 2: 3256-3266. 10.1039/b409865j.
Hert J, Willett P, Wilton DJ, Acklin P, Azzaoui K, Jacoby E, Schuffenhauer A: Comparison of fingerprint-based methods for virtual screening using multiple bioactive reference structures. J Chem Inf Comput Sci. 2004, 44 (3): 1177-1185. 10.1021/ci034231b.
Bender A, Mussa HY, Glen RC, Reiling S: Similarity searching of chemical databases using atom environment descriptors: evaluation of performance (MOLPRINT 2D). J Chem Inf Comput Sci. 2004, 44: 1708-1718. 10.1021/ci0498719.
Jay A, Jain N: Morphological similarity: A 3D molecular similarity method correlated with protein-ligand recognition. J Comput Aid Mol Des. 2000, 14: 199-213. 10.1023/A:1008100132405.
Zhang Q, Muegge I: Scaffold Hopping through Virtual Screening Using 2D and 3D Similarity Descriptors: Ranking, Voting, and Consensus Scoring. J Med Chem. 2006, 49: 1536-1548. 10.1021/jm050468i.
Schnecke V, Bostrom J: Computational chemistry-driven decision making in lead generation. Drug Discov Today. 2006, 11: 43-50. 10.1016/S1359-6446(05)03703-7.
Rush TS, Grant JA, Mosyak L, Nicholls A: A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem. 2005, 48: 1489-1495. 10.1021/jm040163o.
Ballester PJ, Richards WG: Ultrafast shape recognition for similarity search in molecular databases. Proc R Soc A. 2007, 463: 1307-1321. 10.1098/rspa.2007.1823.
Chemical Computing Group: Suite 910. 1010, Sherbrooke St. W, Montreal, Quebec H3A 2R7, Canada
Baber JC, Shirley WA, Gai Y, Feher M: The Use of Consensus Scoring in Ligand-Based Virtual Screening. J Chem Inf Model. 2006, 46: 277-288. 10.1021/ci050296y.
Jorissen RN, Gilson MK: Virtual Screening of Molecular Databases Using a Support Vector Machine. J Chem Inf Model. 2005, 45: 549-561. 10.1021/ci049641u.
Baurin N, Mozziconacci JC, Arnoult E, Chavatte P, Marot C, Morin-Allory L: 2D QSAR Consensus Prediction for High-Throughput Virtual Screening. An Application to COX-2 Inhibition Modeling and Screening of the NCI database. J Chem Inf Comput Sci. 2004, 44: 276-285. 10.1021/ci0341565.
Selzer P, Ertl P: Applications of Self-Organizing Neural Networks in Virtual Screening and Diversity Selection. J Chem Inf Model. 2004, 46: 2319-2323. 10.1021/ci0600657.
Ehrman TM, Barlow DJ, Hylands PJ: Virtual Screening of Chinese Herbs with Random Forest. J Chem Inf Model. 2007, 47: 264-278. 10.1021/ci600289v.
CORINA. [http://www.mol-net.de]
The National Cancer Institute Database. [http://cactus.nci.nih.gov/ncidb2/download.html]
Lipinski CA, Lombardo F, Dominy BW, Feeny PJ: Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv Drug Deliv Rev. 1997, 23: 3-25. 10.1016/S0169-409X(96)00423-1.
Willett P: Searching techniques for databases of two- and three-dimensional chemical structures. J Med Chem. 2005, 48: 4183-4199. 10.1021/jm0582165.
Joanes DN, Gill CA: Comparing measures of sample skewness and kurtosis. J Roy Statistical Society (Series D): The Statistician. 1998, 47: 183-189. 10.1111/1467-9884.00122.
R Development Core Team (2005). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. [http://www.R-project.org]
Cannon EO, Amini A, Bender A, Sternberg MJE, Muggleton SH, Glen RC, Mitchell JBO: Support Vector Inductive Logic Programming Outperforms the Naive Bayes Classifier and Inductive Logic Programming for the Classification of Bioactive Chemical Compounds. J Comput Aid Mol Des. 2007, 21: 269-280. 10.1007/s10822-007-9113-3.
Matthews BW: Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim Biophys Acta. 1975, 405: 442-451.
Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000, 16: 412-424. 10.1093/bioinformatics/16.5.412.
Python Programming Language. [http://www.python.org/]