A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding

Applied Soft Computing - Tập 46 - Trang 703-730 - 2016
Genyun Sun1, Aizhu Zhang1, Yanjuan Yao2, Zhenjie Wang1
1School of Geosciences, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
2Satellite Environment Center (SEC), Ministry of Environmental Protection (MEP) of China, Beijing 100094, China

Tài liệu tham khảo

Zhang, 2011, Image segmentation using PSO and PCM with Mahalanobis distance, Expert Syst. Appl., 38, 9036, 10.1016/j.eswa.2011.01.041 Horng, 2011, Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation, Expert Syst. Appl., 38, 13785 Ghamisi, 2014, Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization, IEEE Trans. Geosci. Remote Sens., 52, 2382, 10.1109/TGRS.2013.2260552 Kapur, 1985, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vis. Gr. Image Process., 29, 273, 10.1016/0734-189X(85)90125-2 Sarkar, 2015, A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution, Pattern Recognit. Lett., 54, 27, 10.1016/j.patrec.2014.11.009 Otsu, 1979, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9, 62, 10.1109/TSMC.1979.4310076 Akay, 2013, A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding, Appl. Soft Comput., 13, 3066, 10.1016/j.asoc.2012.03.072 Li, 1995, Fuzzy entropy threshold approach to breast cancer detection, Inf. Sci. Appl., 4, 49 Kittler, 1986, Minimum error thresholding, Pattern Recognit., 19, 41, 10.1016/0031-3203(86)90030-0 Kurban, 2014, Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding, Appl. Soft Comput., 23, 128, 10.1016/j.asoc.2014.05.037 Chander, 2011, A new social and momentum component adaptive PSO algorithm for image segmentation, Expert Syst. Appl., 38, 4998, 10.1016/j.eswa.2010.09.151 Ali, 2014, Multi-level image thresholding by synergetic differential evolution, Appl. Soft Comput., 17, 1, 10.1016/j.asoc.2013.11.018 Lawler, 1966, Branch-and-bound methods: a survey, Oper. Res., 14, 699, 10.1287/opre.14.4.699 Glover, 2003 Snyman, 2005, vol. 97 Kirkpatrick, 1984, Optimization by simulated annealing: quantitative studies, J. Stat. Phys., 34, 975, 10.1007/BF01009452 origo, 1996, Ant system: optimization by a colony of cooperation agents, IEEE Trans. Syst. Man Cybern. B: Cybern., 26, 29, 10.1109/3477.484436 Karaboga, 2005 Storn, 1997, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341, 10.1023/A:1008202821328 Boussaï d, 2013, Hybrid BBO-DE algorithms for fuzzy entropy-based thresholding, 37 Civicioglu, 2012, Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm, Comput. Geosci., 46, 229, 10.1016/j.cageo.2011.12.011 Kenndy, 1995, Particle swarm optimization, 1942 Baniani, 2013, Hybrid PSO and genetic algorithm for multilevel maximum entropy criterion threshold selection, Int. J. Hybrid Inf. Technol., 6, 131, 10.14257/ijhit.2013.6.5.12 Juang, 2004, A hybrid of genetic algorithm and particle swarm optimization for recurrent network design, IEEE Trans. Syst. Man Cybern. B: Cybern., 34, 997, 10.1109/TSMCB.2003.818557 Patel, 2014, A hybrid ACO/PSO based algorithm for QOS multicast routing problem, Ain Shams Eng. J., 5, 113, 10.1016/j.asej.2013.07.005 Zhang, 2012, A robust hybrid restarted simulated annealing particle swarm optimization technique, Adv. Comput. Sci. Appl., 1, 5 Yin, 1999, A fast scheme for optimal thresholding using genetic algorithms, Signal Process., 72, 85, 10.1016/S0165-1684(98)00167-4 Tao, 2003, Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm, Pattern Recognit. Lett., 24, 3069, 10.1016/S0167-8655(03)00166-1 Hammouche, 2008, A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation, Comput. Vis. Image Underst., 109, 163, 10.1016/j.cviu.2007.09.001 Clerc, 2002, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6, 58, 10.1109/4235.985692 Yin, 2007, Multilevel minimum cross entropy threshold selection based on particle swarm optimization, Appl. Math. Comput., 184, 503 Nabizadeh, 2010, A novel method for multi-level image thresholding using particle swarm optimization algorithms, V4-271 Ayala, 2015, Image thresholding segmentation based on a novel beta differential evolution approach, Expert Syst. Appl., 42, 2136, 10.1016/j.eswa.2014.09.043 Beheshti, 2013, MPSO: median-oriented particle swarm optimization, Appl. Math. Comput., 219, 5817 Beheshti, 2014, CAPSO: centripetal accelerated particle swarm optimization, Inf. Sci., 258, 54, 10.1016/j.ins.2013.08.015 Qin, 2009, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13, 398, 10.1109/TEVC.2008.927706 Hu, 2013, An adaptive particle swarm optimization with multiple adaptive methods, IEEE Trans. Evol. Comput., 17, 705, 10.1109/TEVC.2012.2232931 Rashedi, 2009, GSA: a gravitational search algorithm, Inf. Sci., 179, 2232, 10.1016/j.ins.2009.03.004 Jiang, 2014, Convergence analysis and performance of an improved gravitational search algorithm, Appl. Soft Comput., 24, 363, 10.1016/j.asoc.2014.07.016 Zhang, 2015, A hybrid genetic algorithm and gravitational search algorithm for global optimization, Neural Netw. World, 25, 53, 10.14311/NNW.2015.25.003 Mirjalili, 2012, Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm, Appl. Math. Comput., 218, 11125 Kumar, 2013, Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market, Appl. Soft Comput., 13, 2445, 10.1016/j.asoc.2012.12.003 Sabri, 2013, A review of gravitational search algorithm, Int. J. Adv. Soft Comput., 5, 1 Sarafrazi, 2011, Disruption: a new operator in gravitational search algorithm, Scientia Iranica, 18, 539, 10.1016/j.scient.2011.04.003 Mirjalili, 2010, A new hybrid PSOGSA algorithm for function optimization, 374 Mirjalili, 2014, Adaptive gbest-guided gravitational search algorithm, Neural Comput. Appl., 25, 1569, 10.1007/s00521-014-1640-y Han, 2012, A chaotic digital secure communication based on a modified gravitational search algorithm filter, Inf. Sci. Int. J., 208, 14 Herrera, 1997, Fuzzy connectives based crossover operators to model genetic algorithms population diversity, Fuzzy Sets Syst., 92, 21, 10.1016/S0165-0114(96)00179-0 Pehlivanoglu, 2013, A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks, IEEE Trans. Evol. Comput., 17, 436, 10.1109/TEVC.2012.2196047 Gong, 2010, A real-coded biogeography-based optimization with mutation, Appl. Math. Comput., 216, 2749 Holland, 1975 Azamathulla, 2008, Comparison between genetic algorithm and linear programming approach for real time operation, J. Hydro-environ. Res., 2, 172, 10.1016/j.jher.2008.10.001 Wang, 2005, A modified particle swarm optimizer with roulette selection operator, 765 Narain, 1992, Genetic variability under step-wise discrete mutation and stabilizing selection, J. Indian Soc. Agric. Stat., 44 Sun, 2013, A hybrid genetic algorithm and gravitational search algorithm for image segmentation using multilevel thresholding, 707 Pizurica, 2002, A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising, IEEE Trans. Image Process., 11, 545, 10.1109/TIP.2002.1006401 Martin, 2001, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, 416 Sahoo, 1988, A survey of thresholding techniques, Comput. Vis. Gr. Image Process., 41, 233, 10.1016/0734-189X(88)90022-9 Li, 2015, Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation, Inf. Sci., 294, 408, 10.1016/j.ins.2014.10.005 Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10, 281, 10.1109/TEVC.2005.857610 Derrac, 2011, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1, 3, 10.1016/j.swevo.2011.02.002