A novel hybrid algorithm of gravitational search algorithm with genetic algorithm for multi-level thresholding
Tài liệu tham khảo
Zhang, 2011, Image segmentation using PSO and PCM with Mahalanobis distance, Expert Syst. Appl., 38, 9036, 10.1016/j.eswa.2011.01.041
Horng, 2011, Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation, Expert Syst. Appl., 38, 13785
Ghamisi, 2014, Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization, IEEE Trans. Geosci. Remote Sens., 52, 2382, 10.1109/TGRS.2013.2260552
Kapur, 1985, A new method for gray-level picture thresholding using the entropy of the histogram, Comput. Vis. Gr. Image Process., 29, 273, 10.1016/0734-189X(85)90125-2
Sarkar, 2015, A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution, Pattern Recognit. Lett., 54, 27, 10.1016/j.patrec.2014.11.009
Otsu, 1979, A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9, 62, 10.1109/TSMC.1979.4310076
Akay, 2013, A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding, Appl. Soft Comput., 13, 3066, 10.1016/j.asoc.2012.03.072
Li, 1995, Fuzzy entropy threshold approach to breast cancer detection, Inf. Sci. Appl., 4, 49
Kittler, 1986, Minimum error thresholding, Pattern Recognit., 19, 41, 10.1016/0031-3203(86)90030-0
Kurban, 2014, Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding, Appl. Soft Comput., 23, 128, 10.1016/j.asoc.2014.05.037
Chander, 2011, A new social and momentum component adaptive PSO algorithm for image segmentation, Expert Syst. Appl., 38, 4998, 10.1016/j.eswa.2010.09.151
Ali, 2014, Multi-level image thresholding by synergetic differential evolution, Appl. Soft Comput., 17, 1, 10.1016/j.asoc.2013.11.018
Lawler, 1966, Branch-and-bound methods: a survey, Oper. Res., 14, 699, 10.1287/opre.14.4.699
Glover, 2003
Snyman, 2005, vol. 97
Kirkpatrick, 1984, Optimization by simulated annealing: quantitative studies, J. Stat. Phys., 34, 975, 10.1007/BF01009452
origo, 1996, Ant system: optimization by a colony of cooperation agents, IEEE Trans. Syst. Man Cybern. B: Cybern., 26, 29, 10.1109/3477.484436
Karaboga, 2005
Storn, 1997, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341, 10.1023/A:1008202821328
Boussaï d, 2013, Hybrid BBO-DE algorithms for fuzzy entropy-based thresholding, 37
Civicioglu, 2012, Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm, Comput. Geosci., 46, 229, 10.1016/j.cageo.2011.12.011
Kenndy, 1995, Particle swarm optimization, 1942
Baniani, 2013, Hybrid PSO and genetic algorithm for multilevel maximum entropy criterion threshold selection, Int. J. Hybrid Inf. Technol., 6, 131, 10.14257/ijhit.2013.6.5.12
Juang, 2004, A hybrid of genetic algorithm and particle swarm optimization for recurrent network design, IEEE Trans. Syst. Man Cybern. B: Cybern., 34, 997, 10.1109/TSMCB.2003.818557
Patel, 2014, A hybrid ACO/PSO based algorithm for QOS multicast routing problem, Ain Shams Eng. J., 5, 113, 10.1016/j.asej.2013.07.005
Zhang, 2012, A robust hybrid restarted simulated annealing particle swarm optimization technique, Adv. Comput. Sci. Appl., 1, 5
Yin, 1999, A fast scheme for optimal thresholding using genetic algorithms, Signal Process., 72, 85, 10.1016/S0165-1684(98)00167-4
Tao, 2003, Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm, Pattern Recognit. Lett., 24, 3069, 10.1016/S0167-8655(03)00166-1
Hammouche, 2008, A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation, Comput. Vis. Image Underst., 109, 163, 10.1016/j.cviu.2007.09.001
Clerc, 2002, The particle swarm-explosion, stability, and convergence in a multidimensional complex space, IEEE Trans. Evol. Comput., 6, 58, 10.1109/4235.985692
Yin, 2007, Multilevel minimum cross entropy threshold selection based on particle swarm optimization, Appl. Math. Comput., 184, 503
Nabizadeh, 2010, A novel method for multi-level image thresholding using particle swarm optimization algorithms, V4-271
Ayala, 2015, Image thresholding segmentation based on a novel beta differential evolution approach, Expert Syst. Appl., 42, 2136, 10.1016/j.eswa.2014.09.043
Beheshti, 2013, MPSO: median-oriented particle swarm optimization, Appl. Math. Comput., 219, 5817
Beheshti, 2014, CAPSO: centripetal accelerated particle swarm optimization, Inf. Sci., 258, 54, 10.1016/j.ins.2013.08.015
Qin, 2009, Differential evolution algorithm with strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput., 13, 398, 10.1109/TEVC.2008.927706
Hu, 2013, An adaptive particle swarm optimization with multiple adaptive methods, IEEE Trans. Evol. Comput., 17, 705, 10.1109/TEVC.2012.2232931
Rashedi, 2009, GSA: a gravitational search algorithm, Inf. Sci., 179, 2232, 10.1016/j.ins.2009.03.004
Jiang, 2014, Convergence analysis and performance of an improved gravitational search algorithm, Appl. Soft Comput., 24, 363, 10.1016/j.asoc.2014.07.016
Zhang, 2015, A hybrid genetic algorithm and gravitational search algorithm for global optimization, Neural Netw. World, 25, 53, 10.14311/NNW.2015.25.003
Mirjalili, 2012, Training feedforward neural networks using hybrid particle swarm optimization and gravitational search algorithm, Appl. Math. Comput., 218, 11125
Kumar, 2013, Strategic bidding using fuzzy adaptive gravitational search algorithm in a pool based electricity market, Appl. Soft Comput., 13, 2445, 10.1016/j.asoc.2012.12.003
Sabri, 2013, A review of gravitational search algorithm, Int. J. Adv. Soft Comput., 5, 1
Sarafrazi, 2011, Disruption: a new operator in gravitational search algorithm, Scientia Iranica, 18, 539, 10.1016/j.scient.2011.04.003
Mirjalili, 2010, A new hybrid PSOGSA algorithm for function optimization, 374
Mirjalili, 2014, Adaptive gbest-guided gravitational search algorithm, Neural Comput. Appl., 25, 1569, 10.1007/s00521-014-1640-y
Han, 2012, A chaotic digital secure communication based on a modified gravitational search algorithm filter, Inf. Sci. Int. J., 208, 14
Herrera, 1997, Fuzzy connectives based crossover operators to model genetic algorithms population diversity, Fuzzy Sets Syst., 92, 21, 10.1016/S0165-0114(96)00179-0
Pehlivanoglu, 2013, A new particle swarm optimization method enhanced with a periodic mutation strategy and neural networks, IEEE Trans. Evol. Comput., 17, 436, 10.1109/TEVC.2012.2196047
Gong, 2010, A real-coded biogeography-based optimization with mutation, Appl. Math. Comput., 216, 2749
Holland, 1975
Azamathulla, 2008, Comparison between genetic algorithm and linear programming approach for real time operation, J. Hydro-environ. Res., 2, 172, 10.1016/j.jher.2008.10.001
Wang, 2005, A modified particle swarm optimizer with roulette selection operator, 765
Narain, 1992, Genetic variability under step-wise discrete mutation and stabilizing selection, J. Indian Soc. Agric. Stat., 44
Sun, 2013, A hybrid genetic algorithm and gravitational search algorithm for image segmentation using multilevel thresholding, 707
Pizurica, 2002, A joint inter- and intrascale statistical model for Bayesian wavelet based image denoising, IEEE Trans. Image Process., 11, 545, 10.1109/TIP.2002.1006401
Martin, 2001, A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, 416
Sahoo, 1988, A survey of thresholding techniques, Comput. Vis. Gr. Image Process., 41, 233, 10.1016/0734-189X(88)90022-9
Li, 2015, Dynamic-context cooperative quantum-behaved particle swarm optimization based on multilevel thresholding applied to medical image segmentation, Inf. Sci., 294, 408, 10.1016/j.ins.2014.10.005
Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10, 281, 10.1109/TEVC.2005.857610
Derrac, 2011, A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm Evol. Comput., 1, 3, 10.1016/j.swevo.2011.02.002