A novel high-throughput and quantitative method based on visible color shifts for screening Bacillus subtilis THY-15 for surfactin production
Tóm tắt
A novel chromatic visible screening method using bromothymol blue (BTB) as a color indicator and cetylpyridinium chloride (CPC) as a mediator was constructed to obtain the high titer surfactin-producing strains. The reliability and quantification accuracy of color shift were also confirmed. Regular chromatic responses from faint yellow-green to dark green and bright blue reflected the different ranges of surfactin concentrations. Moreover, the quantitative accuracy of surfactin quantification in the range of 100–500 mg/L was verified by reverse-phase high-performance liquid chromatography (RP-HPLC) using different fermentation supernatant samples. Using this CPC–BTB method, a superior surfactin producer, Bacillus subtilis THY-15, was successfully screened. The producer’s surfactin (Srf) titer reached 1240 mg/L. RP-HPLC analysis of THY-15 revealed four surfactin isoforms. As identified by amino acid analysis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis, the isoforms of surfactin in fraction 1, 2 and 4 had the same circular peptide sequence of Glu-Leu-Leu-Val-Asp-Leu-Leu but different iso-C13, C14 and C15 fatty acid chains, but the isoform in fraction 3 possessed a special peptide sequence of Glu-Val-Leu-Leu-Asp-Leu-Val.
Tài liệu tham khảo
Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32(3):273–280. doi:10.1016/s0167-7012(98)00031-1
Bragg JR, Prince RC, Harner EJ, Atlas RM (1994) Effectiveness of bioremedia for the Exxon-Valdez oil-spill. Nature 368(6470):413–418. doi:10.1038/368413a0
Burch AY, Shimada BK, Browne PJ, Lindow SE (2010) Novel high-throughput detection method to assess bacterial surfactant production. Appl Environ Microbiol 76(16):5363–5372. doi:10.1128/aem.00592-10
Elkhateeb SZ, Abdelmoety EM (1988) Determination of quaternary ammonium surfactants in pharmaceutical formulations by the hyphochromic effect. Talanta 35(10):813–815. doi:10.1016/0039-9140(88)80191-7
Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Annu Rev Microbiol 58:453–488. doi:10.1146/annurev.micro.58.030603.123615
Ghojavand H, Vahabzadeh F, Shahraki AK (2012) Enhanced oil recovery from low permeability dolomite cores using biosurfactant produced by a Bacillus mojavensis (PTCC 1696) isolated from Masjed-I Soleyman field. J Pet Sci Eng 81:24–30. doi:10.1016/j.petrol.2011.12.002
Harner NK, Richardson TL, Thompson KA, Best RJ, Best AS, Trevors JT (2011) Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery. J Ind Microbiol Biotechnol 38(11):1761–1775. doi:10.1007/s10295-011-1024-6
Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49(3):186–191. doi:10.1007/s00284-004-4314-7
Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp biosurfactants. Springer, Heidelberg, pp 57–91
Khan AW, Rahman MS, Zohora US, Okanami M, Ano T (2011) Production of surfactin using pentose carbohydrate by Bacillus subtilis. J Environ Sci (China) 23(Suppl):S63–S65. doi:10.1016/s1001-0742(11)61079-6
Khire J (2010) Bacterial biosurfactants, and their role in microbial enhanced oil recovery (MEOR) biosurfactants. Springer, Heidelberg, pp 146–157
Lazar I, Petrisor IG, Yen TE (2007) Microbial enhanced oil recovery (MEOR). Pet Sci Technol 25(11–12):1353–1366. doi:10.1080/10916460701287714
Liu Q, Lin JZ, Wang WD, Huang H, Li S (2015) Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31–37. doi:10.1016/j.bej.2014.08.023
Liu X, Ren B, Chen M, Wang H, Kokare CR, Zhou X, Wang J, Dai H, Song F, Liu M, Wang J, Wang S, Zhang L (2010) Production and characterization of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl Microbiol Biotechnol 87(5):1881–1893. doi:10.1007/s00253-010-2653-9
Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta Mol Cell Biol Lipids 1488(3):211–218. doi:10.1016/s1388-1981(00)00124-4
Mulligan CN, Galvez-Cloutier R (2003) Bioremediation of metal contamination. Environ Monit Assess 84(1–2):45–60
Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24(4):508–548. doi:10.1002/mas.20024
Plaza GA, Zjawiony I, Banat IM (2006) Use of different methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated bioremediated soils. J Pet Sci Eng 50(1):71–77. doi:10.1016/j.petrol.2005.10.005
Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618. doi:10.1093/jac/dkl024
Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016. doi:10.1007/s00253-012-4641-8
Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energ Combust 34(6):714–724
Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5(4):265–268. doi:10.1007/bf02438660
Sun H, Bie X, Lu F, Lu Y, Wu Y, Lu Z (2009) Enhancement of surfactin production of Bacillus subtilis fmbR by replacement of the native promoter with the Pspac promoter. Can J Microbiol 55(8):1003–1006. doi:10.1139/w09-044
Vandervegt W, Vandermei HC, Noordmans J, Busscher HJ (1991) Assessment of bacterial biosurfactant production through axisymmetrical dropshape-analysis by profile. Appl Microbiol Biotechnol 35(6):766–770
Vaux DJ, Cottingham M (2007) Method and apparatus for measuring surface configuration. Google Patents. Patent number WO 2007/039729 A1
Wang Y, Li G, Lu C, Liu C (1997) Study on the chromogenic reaction of anionic surfactants with quaternary ammonium salts and sulphonphthalein dyes and its applications [J]. Environ Chem 5:014
Yang H, Li X, Li X, Yu H, Shen Z (2015) Identification of lipopeptide isoforms by MALDI-TOF-MS/MS based on the simultaneous purification of iturin, fengycin, and surfactin by RP-HPLC. Anal Bioanal Chem 407(9):2529–2542. doi:10.1007/s00216-015-8486-8
Yang SZ, Wei DZ, Mu BZ (2006) Determination of the amino acid sequence in a cyclic lipopeptide using MS with DHT mechanism. J Biochem Biophys Methods 68(1):69–74. doi:10.1016/j.jbbm.2006.03.008
Yoneda T, Tsuzuki T, Ogata E, Fusyo Y (2001) Surfactin sodium salt: an excellent bio-surfactant for cosmetics. J Cosmet Sci 52(2):153–154
Youssef N, Simpson DR, McInerney MJ, Duncan KE (2013) In-situ lipopeptide biosurfactant production by Bacillus strains correlates with improved oil recovery in two oil wells approaching their economic limit of production. Int Biodeterior Biodegrad 81:127–132. doi:10.1016/j.ibiod.2012.05.010
Youssef NH, Duncan KE, Nagle DP, Savage KN, Knapp RM, McInerney MJ (2004) Comparison of methods to detect biosurfactant production by diverse microorganisms. J Microbiol Methods 56(3):339–347. doi:10.1016/j.mimet.2003.11.001
Zhang L, Sun X, Tian Y, Gong X (2013) Effects of brown sugar and calcium superphosphate on the secondary fermentation of green waste. Bioresour Technol 131:68–75. doi:10.1016/j.biortech.2012.10.059
Zhao S, Meng L, Jiang Y, Chen M-J (1999) Study on the spectrophotometric determination of anionic surfactants with bromothymol blue-cetylpyridinium chloride. J Yunnan Univ (Nat Sci) 21:80–81
Zhu L, Xu Q, Jiang L, Huang H, Li S (2014) Polydiacetylene-based high-throughput screen for surfactin producing strains of Bacillus subtilis. Plos One. doi:10.1371/journal.pone.0088207