A novel four-step feature selection technique for diabetic retinopathy grading
Tóm tắt
Từ khóa
Tài liệu tham khảo
Devi J, Nagur B, Shaik S, Naralasetti V (2021) Composite deep neural network with gated—attention mechanism for diabetic retinopathy severity classification. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02727-z
Sikder N, Masud M, Bairagi AK, Arif ASM, Nahid A-A, Alhumyani HA (2021) Severity classification of diabetic retinopathy using an ensemble learning algorithm through analyzing retinal images. Symmetry (Basel) 13(4):670. https://doi.org/10.3390/sym13040670
Jagan Mohan N, Murugan R, Goel T, Roy P (2020) An improved accuracy rate in microaneurysms detection in retinal fundus images using non-local mean filter. Commun Comput Inf Sci 1240:183–193. https://doi.org/10.1007/978-981-15-6315-7_15
Jagan Mohan N, Murugan R, Goel T, Roy P (2021) Exudate localization in retinal fundus images using modified speeded up robust features algorithm. 2020 IEEE-EMBS conference on biomedical engineering and sciences (IECBES). IEEE, Langkawi Island, pp 367–371. https://doi.org/10.1109/IECBES48179.2021.9398771
Jagan Mohan N, Murugan R, Goel T, Roy P (2020) Optic disc segmentation in fundus images using operator splitting approach. 2020 advanced communication technologies and signal processing (ACTS). IEEE, Silchar. https://doi.org/10.1109/ACTS49415.2020.9350504
Bhardwaj C, Jain S, Sood M (2021) Hierarchical severity grade classification of non-proliferative diabetic retinopathy. J Ambient Intell Humaniz Comput 12(2):2649–2670. https://doi.org/10.1007/s12652-020-02426-9
Alyoubi WL, Shalash WM, Abulkhair MF (2020) Diabetic retinopathy detection through deep learning techniques: a review. Inform Med Unlocked. https://doi.org/10.1016/j.imu.2020.100377
Mansour RF (2018) Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed Eng Lett 8(1):41–57. https://doi.org/10.1007/s13534-017-0047-y
Gayathri S, Gopi VP, Palanisamy P (2020) Automated classification of diabetic retinopathy through reliable feature selection. Phys Eng Sci Med 43(3):927–945. https://doi.org/10.1007/s13246-020-00890-3
Vijayan T, Sangeetha M, Kumaravel A, Karthik B (2020) Gabor filter and machine learning based diabetic retinopathy analysis and detection. Microprocess Microsyst. https://doi.org/10.1016/j.micpro.2020.103353
Mateen M, Wen J, Nasrullah, Song S, Huang Z (2019) Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry (Basel). https://doi.org/10.3390/sym11010001
Gayathri S, Gopi VP, Palanisamy P (2020) A lightweight CNN for diabetic retinopathy classification from fundus images. Biomed Signal Process Control 62:102115
Gayathri S, Krishna AK, Gopi VP, Palanisamy P (2020) Automated binary and multi-class classification of diabetic retinopathy using haralick and multiresolution features. IEEE Access 8:57497–57504
Gayathri S, Gopi VP, Palanisamy P (2021) Diabetic retinopathy classification based on multipath CNN and machine learning classifiers. Phys Eng Sci Med 44:639–653
Welikala RA et al (2015) Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Comput Med Imaging Graph 43:64–77. https://doi.org/10.1016/j.compmedimag.2015.03.003
Jinfeng G, Qummar S, Junming Z, Ruxian Y, Khan FG (2020) Ensemble framework of deep CNNs for diabetic retinopathy detection. Comput Intell Neurosci. https://doi.org/10.1155/2020/8864698
Shanthi T, Sabeenian RS (2019) Modified Alexnet architecture for classification of diabetic retinopathy images. Comput Electr Eng 76:56–64. https://doi.org/10.1016/j.compeleceng.2019.03.004
Kassani SH, Kassani PH, Khazaeinezhad R, Wesolowski MJ, Schneider KA, Deters R (2019) Diabetic retinopathy classification using a modified xception architecture. 2019 IEEE international symposium on signal processing and information technology (ISSPIT). IEEE, Ajman. https://doi.org/10.1109/ISSPIT47144.2019.9001846
Patel R, Chaware A (2020) Transfer learning with fine-tuned MobileNetV2 for diabetic retinopathy. 2020 international conference for emerging technology (INCET). IEEE, Belgaum. https://doi.org/10.1109/INCET49848.2020.9154014
Gangwar AK, Ravi V (2021) Diabetic retinopathy detection using transfer learning and deep learning. Adv Intell Syst Comput 1176:679–689. https://doi.org/10.1007/978-981-15-5788-0_64
Liu H, Yue K, Cheng S, Pan C, Sun J, Li W (2020) Hybrid model structure for diabetic retinopathy classification. J Healthc Eng. https://doi.org/10.1155/2020/8840174
Qummar S et al (2019) A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7:150530–150539. https://doi.org/10.1109/ACCESS.2019.2947484
Jiang H, Yang K, Gao M, Zhang D, Ma H, Qian W (2019) An interpretable ensemble deep learning model for diabetic retinopathy disease classification. 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, Berlin, pp 2045–2048. https://doi.org/10.1109/EMBC.2019.8857160
“Kaggle, Inc. Diabetic retinopathy detection vol. (2016). Available at https://www.kaggle.com/c/diabetic-retinopathy-detection
Porwal P et al (2018) Indian diabetic retinopathy image dataset (IDRiD). IEEE Dataport. https://doi.org/10.21227/H25W98
Decencière E et al (2014) Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol 33(3):231–234. https://doi.org/10.5566/ias.1155
Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Piscataway, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308
He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Piscataway, pp 770–778. https://doi.org/10.1109/CVPR.2016.90
Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd international conference on learning representations, ICLR 2015—conference track proceedings. pp. 1–14
Ding C, Peng H (2003) Minimum redundancy feature selection from microarray gene expression data. In: Proceedings of the 2003 IEEE Bioinformatics Conference: CSB 2003. pp. 523–528. https://doi.org/10.1109/CSB.2003.1227396.
Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization
ME Corporation, Hence J (1992) The feature selection problem: traditional methods and a new algorithm