A novel four-step feature selection technique for diabetic retinopathy grading

N Jagan Mohan1, R. Murugan1, Tripti Goel1, Seyedali Mirjalili2, Parthapratim Roy3
1Bio-Medical Imaging Laboratory (BIOMIL), Department of Electronics and Communication Engineering, National Institute of Technology Silchar, Silchar, Assam, 788010, India
2Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD, 4006, Australia
3Department of Ophthalmology, Silchar Medical College and Hospital, Silchar, Assam, 788014, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Devi J, Nagur B, Shaik S, Naralasetti V (2021) Composite deep neural network with gated—attention mechanism for diabetic retinopathy severity classification. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-020-02727-z

Sikder N, Masud M, Bairagi AK, Arif ASM, Nahid A-A, Alhumyani HA (2021) Severity classification of diabetic retinopathy using an ensemble learning algorithm through analyzing retinal images. Symmetry (Basel) 13(4):670. https://doi.org/10.3390/sym13040670

Jagan Mohan N, Murugan R, Goel T, Roy P (2020) An improved accuracy rate in microaneurysms detection in retinal fundus images using non-local mean filter. Commun Comput Inf Sci 1240:183–193. https://doi.org/10.1007/978-981-15-6315-7_15

Jagan Mohan N, Murugan R, Goel T, Roy P (2021) Exudate localization in retinal fundus images using modified speeded up robust features algorithm. 2020 IEEE-EMBS conference on biomedical engineering and sciences (IECBES). IEEE, Langkawi Island, pp 367–371. https://doi.org/10.1109/IECBES48179.2021.9398771

Jagan Mohan N, Murugan R, Goel T, Roy P (2020) Optic disc segmentation in fundus images using operator splitting approach. 2020 advanced communication technologies and signal processing (ACTS). IEEE, Silchar. https://doi.org/10.1109/ACTS49415.2020.9350504

Bhardwaj C, Jain S, Sood M (2021) Hierarchical severity grade classification of non-proliferative diabetic retinopathy. J Ambient Intell Humaniz Comput 12(2):2649–2670. https://doi.org/10.1007/s12652-020-02426-9

Alyoubi WL, Shalash WM, Abulkhair MF (2020) Diabetic retinopathy detection through deep learning techniques: a review. Inform Med Unlocked. https://doi.org/10.1016/j.imu.2020.100377

Mansour RF (2018) Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy. Biomed Eng Lett 8(1):41–57. https://doi.org/10.1007/s13534-017-0047-y

Gayathri S, Gopi VP, Palanisamy P (2020) Automated classification of diabetic retinopathy through reliable feature selection. Phys Eng Sci Med 43(3):927–945. https://doi.org/10.1007/s13246-020-00890-3

Vijayan T, Sangeetha M, Kumaravel A, Karthik B (2020) Gabor filter and machine learning based diabetic retinopathy analysis and detection. Microprocess Microsyst. https://doi.org/10.1016/j.micpro.2020.103353

Mateen M, Wen J, Nasrullah, Song S, Huang Z (2019) Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry (Basel). https://doi.org/10.3390/sym11010001

Gayathri S, Gopi VP, Palanisamy P (2020) A lightweight CNN for diabetic retinopathy classification from fundus images. Biomed Signal Process Control 62:102115

Gayathri S, Krishna AK, Gopi VP, Palanisamy P (2020) Automated binary and multi-class classification of diabetic retinopathy using haralick and multiresolution features. IEEE Access 8:57497–57504

Gayathri S, Gopi VP, Palanisamy P (2021) Diabetic retinopathy classification based on multipath CNN and machine learning classifiers. Phys Eng Sci Med 44:639–653

Welikala RA et al (2015) Genetic algorithm based feature selection combined with dual classification for the automated detection of proliferative diabetic retinopathy. Comput Med Imaging Graph 43:64–77. https://doi.org/10.1016/j.compmedimag.2015.03.003

Jinfeng G, Qummar S, Junming Z, Ruxian Y, Khan FG (2020) Ensemble framework of deep CNNs for diabetic retinopathy detection. Comput Intell Neurosci. https://doi.org/10.1155/2020/8864698

Shanthi T, Sabeenian RS (2019) Modified Alexnet architecture for classification of diabetic retinopathy images. Comput Electr Eng 76:56–64. https://doi.org/10.1016/j.compeleceng.2019.03.004

Kassani SH, Kassani PH, Khazaeinezhad R, Wesolowski MJ, Schneider KA, Deters R (2019) Diabetic retinopathy classification using a modified xception architecture. 2019 IEEE international symposium on signal processing and information technology (ISSPIT). IEEE, Ajman. https://doi.org/10.1109/ISSPIT47144.2019.9001846

Patel R, Chaware A (2020) Transfer learning with fine-tuned MobileNetV2 for diabetic retinopathy. 2020 international conference for emerging technology (INCET). IEEE, Belgaum. https://doi.org/10.1109/INCET49848.2020.9154014

Gangwar AK, Ravi V (2021) Diabetic retinopathy detection using transfer learning and deep learning. Adv Intell Syst Comput 1176:679–689. https://doi.org/10.1007/978-981-15-5788-0_64

Liu H, Yue K, Cheng S, Pan C, Sun J, Li W (2020) Hybrid model structure for diabetic retinopathy classification. J Healthc Eng. https://doi.org/10.1155/2020/8840174

Qummar S et al (2019) A deep learning ensemble approach for diabetic retinopathy detection. IEEE Access 7:150530–150539. https://doi.org/10.1109/ACCESS.2019.2947484

Jiang H, Yang K, Gao M, Zhang D, Ma H, Qian W (2019) An interpretable ensemble deep learning model for diabetic retinopathy disease classification. 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, Berlin, pp 2045–2048. https://doi.org/10.1109/EMBC.2019.8857160

“Kaggle, Inc. Diabetic retinopathy detection vol. (2016). Available at https://www.kaggle.com/c/diabetic-retinopathy-detection

Porwal P et al (2018) Indian diabetic retinopathy image dataset (IDRiD). IEEE Dataport. https://doi.org/10.21227/H25W98

Decencière E et al (2014) Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol 33(3):231–234. https://doi.org/10.5566/ias.1155

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Piscataway, pp 2818–2826. https://doi.org/10.1109/CVPR.2016.308

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition. IEEE, Piscataway, pp 770–778. https://doi.org/10.1109/CVPR.2016.90

Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: 3rd international conference on learning representations, ICLR 2015—conference track proceedings. pp. 1–14

Ding C, Peng H (2003) Minimum redundancy feature selection from microarray gene expression data. In: Proceedings of the 2003 IEEE Bioinformatics Conference: CSB 2003. pp. 523–528. https://doi.org/10.1109/CSB.2003.1227396.

Yang Y, Pedersen JO (1997) A comparative study on feature selection in text categorization

Kononenko I (1994) Estimating attributes : analysis and extensions of RELIEF

ME Corporation, Hence J (1992) The feature selection problem: traditional methods and a new algorithm

Wan S, Liang Y, Zhang Y (2018) Deep convolutional neural networks for diabetic retinopathy detection by image classification. Comput Electr Eng 72:274–282. https://doi.org/10.1016/j.compeleceng.2018.07.042