Công nghệ giao hàng nano sinh học mới: Exosome miR-181b được thiết kế cải thiện sự kết hợp xương bằng cách điều chỉnh sự phân cực của đại thực bào

Wei Liu1, Muyu Yu2, Feng Chen3, Longqing Wang1, Yufeng Cheng1, Qing Chen1, Qi Zhu1, Dong Xie1, Mingming Shao4, Lili Yang1
1Spine Center, Department of Orthopaedics, Shanghai Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, 200003, Shanghai, China
2Department of Endocrinology and Metabolism, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Medical Centre of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai Key Clinic Centre of Metabolism Disease, Shanghai Institute for Diabetes, Shanghai, China
3Department of Orthopaedics, Shanghai Fengxian Central Hospital, Branch of the Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 201400, People’s Republic of China
4Department of Vascular Surgery, Multidisciplinary Collaboration Group of Diabetic Foot, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China

Tóm tắt

Tóm tắt Đặt vấn đề

Nhiều bệnh nhân gặp phải tình trạng lỏng ghép sau khi cấy ghép hợp kim titan do phản ứng miễn dịch với các vật thể lạ, điều này có thể ức chế quá trình tạo xương tiếp theo, dẫn đến tình trạng lỏng ghép vô khuẩn và giảm sự tích hợp xương, trong khi hiện tại chưa có giải pháp phù hợp trong thực tiễn lâm sàng. Exosome (Exo) mang miRNA đã được chứng minh là một người mang nano thích hợp để giải quyết vấn đề này. Trong nghiên cứu này, chúng tôi đã khám phá xem liệu exosome overexpressing miR-181b (Exo-181b) có thể phát huy tác dụng tích cực trong việc thúc đẩy sự phân cực của đại thực bào M2, từ đó ức chế tình trạng viêm cũng như thúc đẩy quá trình tạo xương và làm rõ cơ chế tiềm ẩn trong vitro. Hơn nữa, chúng tôi đặt mục tiêu tìm hiểu xem liệu Exo-181b có thể tăng cường sự tích hợp xương hay không.

Kết quả

Trong môi trường in vitro, đầu tiên chúng tôi xác nhận rằng Exo-181b đã cải thiện đáng kể sự phân cực M2 và ức chế tình trạng viêm bằng cách ức chế PRKCD và kích hoạt p-AKT. Sau đó, trong môi trường in vivo, chúng tôi xác nhận rằng Exo-181b đã thúc đẩy sự phân cực M2, giảm phản ứng viêm và tăng cường sự tích hợp xương. Ngoài ra, chúng tôi cũng xác nhận rằng sự phân cực M2 được cải thiện có thể gián tiếp thúc đẩy sự di cư và phân hóa nguyên bào xương thông qua việc tiết ra VEGF và BMP-2 trong vitro.

Kết luận

Exo-181b có thể ức chế phản ứng viêm bằng cách thúc đẩy sự phân cực M2 thông qua việc kích hoạt con đường truyền tín hiệu PRKCD/AKT, từ đó thúc đẩy quá trình tạo xương trong vitro và tăng cường sự tích hợp xương trong in vivo.

Tóm tắt đồ họa

Từ khóa


Tài liệu tham khảo

Kohli N, Ho S, Brown SJ, et al. Bone remodelling in vitro: where are we headed?:—a review on the current understanding of physiological bone remodelling and inflammation and the strategies for testing biomaterials in vitro. Bone. 2018;110:38–46.

Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012;8(3):133–43.

Mokarram N, Bellamkonda RV. A perspective on immunomodulation and tissue repair. Ann Biomed Eng. 2014;42(2):338–51.

Tsukasaki M, Takayanagi H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat Rev Immunol. 2019;19(10):626–42.

Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450–62.

Liu W, Li J, Cheng M, et al. Zinc-modified sulfonated polyetheretherketone surface with immunomodulatory function for guiding cell fate and bone regeneration. Adv Sci (Weinh). 2018;5(10):1800749.

Jin SS, He DQ, Luo D, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration. ACS Nano. 2019;13(6):6581–95.

Wei JW, Huang K, Yang C, et al. Non-coding RNAs as regulators in epigenetics (review). Oncol Rep. 2017;37(1):3–9.

Zhang B, Zhang Z, Li L, et al. TSPAN15 interacts with BTRC to promote oesophageal squamous cell carcinoma metastasis via activating NF-κB signaling. Nat Commun. 2018;9(1):1423.

Yang Z, Wan X, Gu Z, et al. Evolution of the mir-181 microRNA family. Comput Biol Med. 2014;52:82–7.

Xu LJ, Ouyang YB, Xiong X, et al. Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp Neurol. 2015;264:1–7.

de Couto G, Gallet R, Cambier L, et al. Exosomal microRNA transfer into macrophages mediates cellular postconditioning. Circulation. 2017;136(2):200–14.

Wang Z, Li C, Sun X, et al. Hypermethylation of miR-181b in monocytes is associated with coronary artery disease and promotes M1 polarized phenotype via PIAS1-KLF4 axis. Cardiovasc Diagn Ther. 2020;10(4):738–51.

Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487–514.

Tao SC, Guo SC, Li M, et al. Chitosan wound dressings incorporating exosomes derived from MicroRNA-126-overexpressing synovium mesenchymal stem cells provide sustained release of exosomes and heal full-thickness skin defects in a diabetic rat model. Stem Cells Transl Med. 2017;6(3):736–47.

Tao SC, Guo SC, Zhang CQ. Modularized extracellular vesicles: the dawn of prospective personalized and precision medicine. Adv Sci (Weinh). 2018;5(2):1700449.

Lai RC, Yeo RW, Lim SK. Mesenchymal stem cell exosomes. Semin Cell Dev Biol. 2015;40:82–8.

Zheng G, Huang R, Qiu G, et al. Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res. 2018;374(1):1–15.

Jafarzadeh N, Safari Z, Pornour M, et al. Alteration of cellular and immune-related properties of bone marrow mesenchymal stem cells and macrophages by K562 chronic myeloid leukemia cell derived exosomes. J Cell Physiol. 2019;234(4):3697–710.

Ekström K, Omar O, Granéli C, et al. Monocyte exosomes stimulate the osteogenic gene expression of mesenchymal stem cells. PLoS ONE. 2013;8(9):e75227.

Zhao J, Li X, Hu J, et al. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc Res. 2019;115(7):1205–16.

Li X, Liu L, Yang J, et al. Exosome derived from human umbilical cord mesenchymal stem cell mediates MiR-181c attenuating burn-induced excessive inflammation. EBioMedicine. 2016;8:72–82.

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

Yuan X, Cao H, Wang J, et al. Immunomodulatory effects of calcium and strontium co-doped titanium oxides on osteogenesis. Front Immunol. 2017;8:1196.

Franz S, Rammelt S, Scharnweber D, et al. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials. 2011;32(28):6692–709.

Nuss KM, von Rechenberg B. Biocompatibility issues with modern implants in bone—a review for clinical orthopedics. Open Orthop J. 2008;2:66–78.

Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am. 2004;86(7):1541–58.

Miron RJ, Bosshardt DD. OsteoMacs: key players around bone biomaterials. Biomaterials. 2016;82:1–19.

Ying H, Kang Y, Zhang H, et al. MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J Immunol. 2015;194(3):1239–51.

Sun X, Lin J, Zhang Y, et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ Res. 2016;118(5):810–21.

An TH, He QW, Xia YP, et al. MiR-181b antagonizes atherosclerotic plaque vulnerability through modulating macrophage polarization by directly targeting notch1. Mol Neurobiol. 2017;54(8):6329–41.

Rigamonti E, Zordan P, Sciorati C, et al. Macrophage plasticity in skeletal muscle repair. Biomed Res Int. 2014;2014:560629.

Yang C, Liu X, Zhao K, et al. miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther. 2019;10(1):65.

Zhang L, Tang Y, Zhu X, et al. Overexpression of MiR-335–5p promotes bone formation and regeneration in mice. J Bone Miner Res. 2017;32(12):2466–75.

Li Y, Fan L, Liu S, et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials. 2013;34(21):5048–58.

Arranz A, Doxaki C, Vergadi E, et al. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proc Natl Acad Sci USA. 2012;109(24):9517–22.

Liu L, Zhu X, Zhao T, et al. Sirt1 ameliorates monosodium urate crystal-induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology (Oxford). 2019;58(9):1674–83.

Vergadi E, Ieronymaki E, Lyroni K, et al. Akt signaling pathway in macrophage activation and M1/M2 polarization. J Immunol. 2017;198(3):1006–14.

Liu F, Qiu H, Xue M, et al. MSC-secreted TGF-β regulates lipopolysaccharide-stimulated macrophage M2-like polarization via the Akt/FoxO1 pathway. Stem Cell Res Ther. 2019;10(1):345.

Tan JL, Lau SN, Leaw B, et al. Amnion epithelial cell-derived exosomes restrict lung injury and enhance endogenous lung repair. Stem Cells Transl Med. 2018;7(2):180–96.

Wang G, Shi Y, Jiang X, et al. HDAC inhibition prevents white matter injury by modulating microglia/macrophage polarization through the GSK3β/PTEN/Akt axis. Proc Natl Acad Sci USA. 2015;112(9):2853–8.

Newton AC. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem J. 2003;370(Pt 2):361–71.

Li L, Sampat K, Hu N, et al. Protein kinase C negatively regulates Akt activity and modifies UVC-induced apoptosis in mouse keratinocytes. J Biol Chem. 2006;281(6):3237–43.

Li Q, Park K, Xia Y, et al. Regulation of macrophage apoptosis and atherosclerosis by lipid-induced PKCδ isoform activation. Circ Res. 2017;121(10):1153–67.

Naruse K, Rask-Madsen C, Takahara N, et al. Activation of vascular protein kinase C-beta inhibits Akt-dependent endothelial nitric oxide synthase function in obesity-associated insulin resistance. Diabetes. 2006;55(3):691–8.

Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Adv Mater. 2015;27(7):1143–69.

György B, Hung ME, Breakefield XO, et al. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439–64.

Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther. 2010;18(9):1606–14.

Jiang F, Zhang W, Zhou M, et al. Human amniotic mesenchymal stromal cells promote bone regeneration via activating endogenous regeneration. Theranostics. 2020;10(14):6216–30.

Chu C, Wang Y, Wang Y, et al. Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype. Mater Sci Eng C Mater Biol Appl. 2019;99:73–82.

Weischenfeldt J, Porse B. Bone marrow-derived macrophages (BMM): isolation and applications. CSH Protoc. 2008;2008:pdb.prot5080.