A novel cost function to estimate parameters of oscillatory biochemical systems

Springer Science and Business Media LLC - Tập 2012 - Trang 1-17 - 2012
Seyedbehzad Nabavi1, Cranos M Williams1
1Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, USA

Tóm tắt

Oscillatory pathways are among the most important classes of biochemical systems with examples ranging from circadian rhythms and cell cycle maintenance. Mathematical modeling of these highly interconnected biochemical networks is needed to meet numerous objectives such as investigating, predicting and controlling the dynamics of these systems. Identifying the kinetic rate parameters is essential for fully modeling these and other biological processes. These kinetic parameters, however, are not usually available from measurements and most of them have to be estimated by parameter fitting techniques. One of the issues with estimating kinetic parameters in oscillatory systems is the irregularities in the least square (LS) cost function surface used to estimate these parameters, which is caused by the periodicity of the measurements. These irregularities result in numerous local minima, which limit the performance of even some of the most robust global optimization algorithms. We proposed a parameter estimation framework to address these issues that integrates temporal information with periodic information embedded in the measurements used to estimate these parameters. This periodic information is used to build a proposed cost function with better surface properties leading to fewer local minima and better performance of global optimization algorithms. We verified for three oscillatory biochemical systems that our proposed cost function results in an increased ability to estimate accurate kinetic parameters as compared to the traditional LS cost function. We combine this cost function with an improved noise removal approach that leverages periodic characteristics embedded in the measurements to effectively reduce noise. The results provide strong evidence on the efficacy of this noise removal approach over the previous commonly used wavelet hard-thresholding noise removal methods. This proposed optimization framework results in more accurate kinetic parameters that will eventually lead to biochemical models that are more precise, predictable, and controllable.

Tài liệu tham khảo

Goldbeter A: Biochemical Oscillations and Cellular Rhythms the Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge; 1996. Fall C, Marland E, Tyson J: Computational Cell Biology. Springer, New York; 2002. Perez-Martin J: Growth and development eukaryotes. Current Opinion Microbiol 2010, 13(6):661-662. 10.1016/j.mib.2010.10.007 Yan J, Wang H, Liu Y, Shao C: Analysis of gene regulatory networks in the mammalian circadian rhythm. PLos Comput Biol 2008, 4(10):e1000193. 10.1371/journal.pcbi.1000193 Collins K, Jacks T, Pavletich N: The cell cycle and cancer. PNAS: Proc Natl Acad Sci 1997, 94(7):2776-2778. 10.1073/pnas.94.7.2776 Boullin J, Morgan JM: The development of cardiac rhythm. Heart 2005, 91(7):874-875. 10.1136/hrt.2004.047415 Perry J: The Ovarian Cycle of Mammals. Oliver and Boyd, Edinburgh; 1971. Zaccolo M, Pozzan T: cAMP and Ca2+ interplay: a matter of oscillation patterns. Trends Neurosci 2003, 26(2):53-55. 10.1016/S0166-2236(02)00017-6 Bagheri N, Lawson M, Stelling J, Doyle F: Modeling the Drosophila melanogaster circadian oscillator via Phase optimization. J Biol Rhythms 2008, 23(6):525-537. 10.1177/0748730408325041 Zeilinger M, Farre E, Taylor S, Kay S, Doyle F: A novel computational model of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9. Mol Syst Biol 2006., 2(58): Locke J, Millar A, Turner M: Modelling genetic networks with noisy and varied experimental data the circadian clock in Arabidopsis thaliana. J Theor Biol 2005, 234(3):383-393. 10.1016/j.jtbi.2004.11.038 Rodriguez-Fernandez M, Mendes P, Banga J: A hybrid approach for efficient and robust parameter estimation in biochemical pathways. BioSystems 2005, 83: 248-265. Vyshemirsky V, Girolami M: Bayesian ranking of biochemical system models. Bioinformatics 2008, 24(6):833-839. 10.1093/bioinformatics/btm607 Chou IC, Voit E: Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 2009, 219(2):57-83. 10.1016/j.mbs.2009.03.002 Mostacci E, Truntzer C, Cardot H, Ducoroy P: Multivariate denoising methods combining wavelets and principal component analysis for mass spectrometry data. Proteomics 2010, 10(14):2564-2572. 10.1002/pmic.200900185 Tang G, Qin A: ECG de-noising based on empirical mode decomposition. The 9th International Conference for Young Computer Scientists, 2008. ICYCS 2008, 903-906. Ren Z, Liu G, Zeng L, Huang Z, Huang S: Research on biochemical spectrum denoising based on a novel wavelet threshold function and an improved translation-invariance method. Proc SPIE 2008, 7280: 72801Q. Sugimoto M, Kikuchi S, Tomita M: Reverse engineering of biochemical equations from time-course data by means of genetic programming. Biosystems 2005, 80(2):155-164. 10.1016/j.biosystems.2004.11.003 Gonzalez O, Kuper C, Jung K, Naval JP, Mendoza E: Parameter estimation using simulated annealing for S-system models of biochemical networks. Bioinformatics 2007, 23(4):480-486. 10.1093/bioinformatics/btl522 Flaherty P, Radhakrishnan M, Dinh T, Rebres R, Roach T, Jordan M, Arkin A: A dual receptor crosstalk model of g-protein-coupled signal transduction. PLoS Comput Biol 2008, 4(9):e1000185. 10.1371/journal.pcbi.1000185 Zhan C, Yeung L: Parameter estimation in systems biology models using spline approximation. BMC Syst Biol 2011., 5(14): Marquardt D: An algorithm for least squares estimation of nonlinear parameters. SIAM J Appl Math 1963, 11(2):431-441. 10.1137/0111030 Renders J, Flasse S: Hybrid methods using genetic algorithms for global optimization. IEEE Trans Syst Man Cybernet Part B, Cybernet 1996, 26(2):243-258. 10.1109/3477.485836 Gerhard D: Pitch extraction and fundamental frequency history and current techniques. Department of Computer Science, University of Regina, Regina, Canada 2003. Tyson J, Hong C, Thron D, Novak B: A simple model of circadian rhythm based on dimerization and proteolysis of PER and TIM. Biophys J 1999, 77: 2411-2417. 10.1016/S0006-3495(99)77078-5 Kondepudi D, Prigogine I: Modern Thermodynamics from Heat Engines to Dissipative Structures. Wiley, Chichester; 1998. Goldbeter A: A model for circadian oscillations in the drosophila period protein (PER). Proc Royal Soc B, Biol Sci 1995, 261(1362):319-324. 10.1098/rspb.1995.0153 Mallat S: A Wavelet Tour of Signal Processing. American Press, San Diego; 1998. Mallat S: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Pattern Anal Mach Intell 1989, 11(7):674-693. 10.1109/34.192463 Cheveigne A, Kawahara H: Yin, a fundamental frequency estimator for speech and music. J Acoust Soc Am 2002, 111(4):1917-1930. 10.1121/1.1458024 Moles C, Mendes P, Banga J: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 2003, 13(11):2467-2474. 10.1101/gr.1262503 Inc TM: MATLAB: version 7.6.0. Natick Massachusetts 2008. Lagarias J, Reeds J, Wright M, Wright P: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 1998, 9: 112-147. 10.1137/S1052623496303470 Le Novère N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H, Schilstra M, Shapiro B, Snoep JL, Hucka M: BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 2006, 34(suppl 1):D689-D691. Gutenkunst R, Waterfall J, Casey F, Brown K, Myers C, Sethna J: Universally Sloppy Parameter Sensitivities in Systems Biology Models. PLos Comput Biol 2005, 3(10):1871-1878. Waterfall J, Casey F, Gutenkunst R, Brown K, Myers C, Brouwer P, Elser V, Sethna J: Sloppy-model universality class and the Vandermonde matrix. Phys Rev Lett 2006, 97(15):150601. Apgar J, Witmer D, Whitead F, Tidor B: Sloppy models, parameter uncertainty, and the role of experimental design. Mol BioSyst 2010, 6(10):1890-1900. 10.1039/b918098b