A novel automated simulator of pediatric systemic circulation: Design and applications
Tài liệu tham khảo
Buchholz, 2018, Ventricular assist device therapy and heart transplantation: benefits, drawbacks, and outlook, Herz., 43, 406, 10.1007/s00059-018-4713-3
Fukunaga, 2018, Left ventricular assist device as destination therapy for end stage heart failure: the right time for the right patients, Curr. Opin. Cardiol., 33, 196, 10.1097/HCO.0000000000000486
Tunuguntla, 2020, Destination-therapy ventricular assist device in children: “the future is now”, Can J Cardiol., 36, 216, 10.1016/j.cjca.2019.10.033
Daners, 2017, Left ventricular assist devices: challenges toward sustaining long-term patient cCare, Ann. Biomed. Eng., 45, 1836, 10.1007/s10439-017-1858-9
Burki, 2017, Pediatric ventricular assist devices: current challenges and future prospects, Vasc. Health Risk Manag., 15, 177, 10.2147/VHRM.S82379
Miera, 2016, A multicenter study of the HeartWare HVAD ventricular assist device in small children, J. Heart Lung Transplant., 35, 679, 10.1016/j.healun.2016.01.019
Adachi, 2018, Current status and future perspectives of the PumpKIN trial, Transl. Pediatr., 7, 162, 10.21037/tp.2018.02.04
Adachi, 2019, The miniaturized pediatric continuous-flow device: a successful bridge to heart transplant, J. Heart Lung Transplant., 38, 789, 10.1016/j.healun.2019.04.004
Itkin, 2018, Results of experimental studies of the children’s axial pump «DON-3», Russ. J. Transplantol. Artif. Organs., 20, 61, 10.15825/1995-1191-2018-2-61-68
I.A. Cestari, M. Mazzetto, H.T.T. Oyama, S. Bacht, M.B. Jatente, I.N. Cestari, et al. Design and hydrodynamic performance of a pediatric pulsatile pump. XXVI Brazilian Congress on Biomedical Engineering. 2019 Jun;70(01):85-8. doi.org/10.1007/978-981-13-2119-1_13.
Pantalos, 2004, Characterization of an adult mock circulation for testing cardiac support devices, ASAIO J., 50, 37, 10.1097/01.MAT.0000104818.70726.E6
Timms, 2011, A compact mock circulation loop for the in vitro testing of cardiovascular devices, Artif. Organs., 35, 384, 10.1111/j.1525-1594.2010.01088.x
R.A. Rodriguez, Redesign and performance evaluation of a cardiac pulse duplicator (Master’s thesis, Stellenbosch University, Western Cape, South Africa). Retrieved from Semantic Scholar. (Corpus ID: 64624329), 2017.
Cordeiro, 2020, A physiological control system for ECG-synchronized pulsatile pediatric ventricular assist devices, Biomed. Signal Proces., 57, 10.1016/j.bspc.2019.101752
Melo, 2020, Feedback controller for restoring the basal hemodynamic condition with a rotary blood pump used as left ventricular assist device, Biomed. Signal Proces., 62, 10.1016/j.bspc.2020.102136
G.M. Pantalos, Use of computer and in vitro modeling techniques during the development of pediatric circulatory support devices: National Heart, Lung, and Blood Institute Pediatric Assist Device Contractor's Meeting: Pediatric Modeling Techniques Working Group. ASAIO J. 2009 Jan-Feb;55(1):3-5. doi: 10.1097/MAT.0b013e318198dd88. Erratum in: ASAIO J. 2009 May-Jun;55(3):307. PMID: 19139651.
Goodwin, 2004, A model for educational simulation of infant cardiovascular physiology, Anesth Analg., 99, 1655, 10.1213/01.ANE.0000134797.52793.AF
Cuenca-Navalon, 2014, Design and evaluation of a hybrid mock circulatory loop for total artificial heart testing, Int. J. Artif. Organs., 37, 71, 10.5301/ijao.5000301
Telyshev, 2017, A mock circulatory system for testing pediatric rotary blood pumps, Biomed. Eng., 51, 83, 10.1007/s10527-017-9689-4
D.V. Telyshev, A.A. Pugovkin, Automated pediatric cardiovascular simulator for left ventricular assist device evaluation. International Siberian Conference on Control and Communications 2017 Jun. doi: 10.1109/SIBCON.2017.7998543.
Ferrara, 2010, Particle-image velocimetry study of a pediatric ventricular assist device, J. Biomech. Eng., 132, 10.1115/1.4001252
Stergiopulos, 1999, Total arterial inertance as the fourth element of the windkessel model, Am. J. Physiol., 276, H81
Sharp, 2000, Aortic input impedance in infants and children, J. Appl. Physiol. (1985), 88, 2227, 10.1152/jappl.2000.88.6.2227
L. Formaggia, A. Veneziani, Reduced and multiscale models for the human cardiovascular system [PDF file], 2005. Available from https://www.mate.polimi.it/biblioteca/add/qmox/mox21.pdf.
Hunsberger, 2005
National Institute of Health, The fourth report on diagnosis, evaluations, and treatment of high blood pressure in children and adolescents [PDF file], 2003. Available from: https://www.nhlbi.nih.gov/files/docs/resources/heart/hbp_ped.pdf.
Pantalos, 2010, Expanded pediatric cardiovascular simulator for research and training, ASAIO J., 56, 67, 10.1097/MAT.0b013e3181c838ae
Uriel, 2018, Mechanical unloading in heart failure, J. Am. Coll. Cardiol., 72, 569, 10.1016/j.jacc.2018.05.038
Birks, 2013, Molecular changes after left ventricular assist device support for heart failure, Circ. Res., 113, 777, 10.1161/CIRCRESAHA.113.301413
Sagawa, 1988, Cardiovascular interaction, 248
Soucy, 2013, Defining pulsatility during continuous-flow ventricular assist device support, J. Heart Lung Transplant., 32, 581, 10.1016/j.healun.2013.02.010
Ündar, 1999, Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons, ASAIO J., 45, 610, 10.1097/00002480-199911000-00017
Guyton, 1956, Pressure-volume curves of the arterial and venous systems in live dogs, Am J Physiol., 184, 253, 10.1152/ajplegacy.1956.184.2.253
Timms, 2005, A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices, Artif. Organs., 29, 564, 10.1111/j.1525-1594.2005.29094.x
Koenig, 2004, Hemodynamic and pressure-volume responses to continuous and pulsatile ventricular assist in an adult mock circulation, ASAIO J., 50, 15, 10.1097/01.MAT.0000104816.50277.EB
Morley, 2007, Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data, J. Thorac. Cardiovasc. Surg., 133, 21, 10.1016/j.jtcvs.2006.07.037
Good, 2016, Continuous and pulsatile pediatric ventricular assist device hemodynamics with a viscoelastic blood model, Cardiovasc. Eng. Technol., 7, 23, 10.1007/s13239-015-0252-8
Pantalos, 2007, Effect of continuous and pulsatile left ventricular assist on pulsatility in a pediatric animal model of left ventricular dysfunction: pilot observations, ASAIO J., 53, 385, 10.1097/MAT.0b013e318050d210
Cheng, 2014, Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility?, Ann. Cardiothorac. Surg., 3, 573
Bozkurt, 2016, Enhancement of arterial pressure pulsatility by controlling continuous-flow left ventricular assist device flow rate in Mock Circulatory System, J. Med. Biol. Eng., 36, 308, 10.1007/s40846-016-0140-1
Ündar, 2005, Majors factors in the controversy of pulsatile versus nonpulsatile flow during acute and chronic cardiac support, ASAIO J., 51, 173, 10.1097/01.MAT.0000161944.20233.40
Ji, 2006, An evaluation of the benefits of pulsatile versus nonpulsatile perfusion during cardiopulmonary bypass procedures in pediatric and adult cardiac patients, ASAIO J., 52, 357, 10.1097/01.mat.0000225266.80021.9b
Naito, 2018, Rotational speed modulation used with continuous-flow left ventricular assist device provides good pulsatility, Interact. Cardiovasc. Thorac. Surg., 26, 119, 10.1093/icvts/ivx236
Grosman-Rimon, 2018, The physiological rationale for incorporating pulsatility in continuous-flow left ventricular assist devices, Cardiol. Rev., 26, 294, 10.1097/CRD.0000000000000202
Torres, 2016, A computer controlled hydraulic simulator of the pediatric circulation, Artif. Organs, 40, A5
Schroedl, 2012, Use of simulation-based education to improve resident learning and patient care in the medical intensive care unit: a randomized trial, J. Crit. Care, 27, 219.e713, 10.1016/j.jcrc.2011.08.006