A novel approach to investigate the evolution of structured tandem repeat protein families by exon duplication
Tài liệu tham khảo
Kajava, 2012, Tandem repeats in proteins: from sequence to structure, J. Struct. Biol., 179, 279, 10.1016/j.jsb.2011.08.009
Paladin, 2015, Comparison of protein repeat classifications based on structure and sequence families, Biochem. Soc. Trans., 43, 832, 10.1042/BST20150079
Espada, 2015, Repeat proteins challenge the concept of structural domains, Biochem. Soc. Trans., 43, 844, 10.1042/BST20150083
Kobe, 2000, When protein folding is simplified to protein coiling: the continuum of solenoid protein structures, Trends Biochem. Sci., 25, 509, 10.1016/S0968-0004(00)01667-4
Kobe, 2001, The leucine-rich repeat as a protein recognition motif, Curr. Opin. Struct. Biol., 11, 725, 10.1016/S0959-440X(01)00266-4
Mosavi, 2004, The ankyrin repeat as molecular architecture for protein recognition, Protein Sci. Publ. Protein Soc., 13, 1435, 10.1110/ps.03554604
Smith, 2008, Diversity of WD-repeat proteins, Subcell. Biochem., 48, 20, 10.1007/978-0-387-09595-0_3
Andrade, 2001, Protein repeats: structures, functions, and evolution, J. Struct. Biol., 134, 117, 10.1006/jsbi.2001.4392
Delucchi, 2020, A new census of protein tandem repeats and their relationship with intrinsic disorder, Genes, 11, 407, 10.3390/genes11040407
Schüler, 2016, Evolution of Protein Domain Repeats in Metazoa, Mol. Biol. Evol., 33, 3170, 10.1093/molbev/msw194
Schaper, 2015, The evolution and function of protein tandem repeats in plants, New Phytol., 206, 397, 10.1111/nph.13184
Liu, 2005, Exon-domain correlation and its corollaries, Bioinforma. Oxf. Engl., 21, 3213, 10.1093/bioinformatics/bti509
Lorente-Galdos, 2013, Accelerated exon evolution within primate segmental duplications, Genome Biol., 14, R9, 10.1186/gb-2013-14-1-r9
Dohmen, 2020, The modular nature of protein evolution: domain rearrangement rates across eukaryotic life, BMC Evol. Biol., 20, 10.1186/s12862-020-1591-0
A. Fedorov, L. Fedorova, V. Starshenko, V. Filatov, and E. Grigor’ev, Influence of Exon Duplication on Intron and Exon Phase Distribution, J. Mol. Evol., 46(3), pp. 263–271, Mar. 1998, doi: 10.1007/PL00006302.
Letunic, 2002, Common exon duplication in animals and its role in alternative splicing, Hum. Mol. Genet., 11, 1561, 10.1093/hmg/11.13.1561
Haigis, 2002, Evolution of ribonuclease inhibitor by exon duplication, Mol. Biol. Evol., 19, 959, 10.1093/oxfordjournals.molbev.a004153
Björklund, 2010, Nebulin: a study of protein repeat evolution, J. Mol. Biol., 402, 38, 10.1016/j.jmb.2010.07.011
Light, 2012, The evolution of filamin-a protein domain repeat perspective, J. Struct. Biol., 179, 289, 10.1016/j.jsb.2012.02.010
Schaper, 2014, Deep conservation of human protein tandem repeats within the eukaryotes, Mol. Biol. Evol., 31, 1132, 10.1093/molbev/msu062
Street, 2006, The role of introns in repeat protein gene formation, J. Mol. Biol., 360, 258, 10.1016/j.jmb.2006.05.024
B. Smithers, M. Oates, and J. Gough, “‘Why genes in pieces?’—revisited,” Nucl. Acids Res., doi: 10.1093/nar/gkz284.
Di Domenico, T., et al., RepeatsDB: a database of tandem repeat protein structures, Nucl. Acids Res., vol. 42, no. Database issue, pp. D352-357, 2014, doi: 10.1093/nar/gkt1175.
Paladin, 2017, RepeatsDB 2.0: improved annotation, classification, search and visualization of repeat protein structures, Nucl. Acids Res., 45, D308, 10.1093/nar/gkw1136
Perez-Riba, A., Synakewicz, M., Itzhaki, L.S., 2020. “Folding cooperativity and allosteric function in the tandem-repeat protein class | Philosophical Transactions of the Royal Society B: Biological Sciences.” https://royalsocietypublishing.org/doi/10.1098/rstb.2017.0188 (accessed Apr. 08, 2020).
RCSB Protein Data Bank: Enabling biomedical research and drug discovery - Goodsell - 2020 - Protein Science - Wiley Online Library. https://onlinelibrary.wiley.com/doi/full/10.1002/pro.3730 (accessed Apr. 08, 2020).
UniProt Consortium, 2019, UniProt: a worldwide hub of protein knowledge, Nucl. Acids Res., 47, D506, 10.1093/nar/gky1049
Cunningham, 2019, Ensembl 2019, Nucl. Acids Res., 47, D745, 10.1093/nar/gky1113
El-Gebali, 2019, The Pfam protein families database in 2019, Nucl. Acids Res., 47, D427, 10.1093/nar/gky995
Mistry, 2013, The challenge of increasing Pfam coverage of the human proteome, Database J. Biol. Databases Curation, 2013, p. bat023
Zhang, 2005, TM-align: a protein structure alignment algorithm based on the TM-score, Nucl. Acids Res., 33, 2302, 10.1093/nar/gki524
Dana, 2019, SIFTS: updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins, Nucl. Acids Res., 47, D482, 10.1093/nar/gky1114
Hirsh, 2018, RepeatsDB-lite: a web server for unit annotation of tandem repeat proteins, Nucl. Acids Res., 46, W402, 10.1093/nar/gky360
Suzek, B.E., Wang, Y., Huang, H., McGarvey, P.B., Wu, C.H., and UniProt Consortium, UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches, Bioinforma. Oxf. Engl., vol. 31, no. 6, pp. 926–932, Mar. 2015, doi: 10.1093/bioinformatics/btu739.
Liu, 2004, Protein domains correlate strongly with exons in multiple eukaryotic genomes–evidence of exon shuffling?, Trends Genet. TIG, 20, 399, 10.1016/j.tig.2004.06.013
Bella, 2008, The leucine-rich repeat structure, Cell Mol. Life Sci., 65, 2307, 10.1007/s00018-008-8019-0
Kajava, A.V., Steven, A.C., β‐Rolls, β‐Helices, and Other β‐Solenoid Proteins. In: Advances in Protein Chemistry, vol. Volume 73, J. M. S. and D. A. D. P. Andrey Kajava, Ed. Academic Press, 2006, pp. 55–96.
Islam, 2018, New paradigm in ankyrin repeats: Beyond protein-protein interaction module, Int. J. Biol. Macromol., 109, 1164, 10.1016/j.ijbiomac.2017.11.101
Kumar, 2014, Structure and function of LGR5: an enigmatic G-protein coupled receptor marking stem cells, Protein Sci. Publ. Protein Soc., 23, 551, 10.1002/pro.2446
Binz, 2003, Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins, J. Mol. Biol., 332, 489, 10.1016/S0022-2836(03)00896-9
Morrone, 2012, Crystal structure of a Tankyrase-Axin complex and its implications for Axin turnover and Tankyrase substrate recruitment, Proc. Natl. Acad. Sci. U.S.A., 109, 1500, 10.1073/pnas.1116618109
Dedow, 2019, Searching for a match: structure, function and application of sequence-specific RNA-binding proteins, Plant Cell Physiol., 60, 1927, 10.1093/pcp/pcz072
Gupta, 2008, Structures of human pumilio with noncognate RNAs reveal molecular mechanisms for binding promiscuity, Structure, 16, 549, 10.1016/j.str.2008.01.006
Andrade, 2001, Comparison of ARM and HEAT protein repeats, J. Mol. Biol., 309, 1, 10.1006/jmbi.2001.4624
Perez-Riba, 2019, The tetratricopeptide-repeat motif is a versatile platform that enables diverse modes of molecular recognition, Curr. Opin. Struct. Biol., 54, 43, 10.1016/j.sbi.2018.12.004
Tewari, 2010, Armadillo-repeat protein functions: questions for little creatures, Trends Cell Biol., 20, 470, 10.1016/j.tcb.2010.05.003
Chaudhuri, 2008, Evolution of the beta-propeller fold, Proteins, 71, 795, 10.1002/prot.21764
Kopec, 2013, β-Propeller blades as ancestral peptides in protein evolution, PloS One, 8, 10.1371/journal.pone.0077074
Clark, 2016, How to build a complex, functional propeller protein, from parts, Trends Biochem. Sci., 41, 290, 10.1016/j.tibs.2016.02.010
Liu, 2003, Analysis of primate genomic variation reveals a repeat-driven expansion of the human genome, Genome Res., 13, 358, 10.1101/gr.923303