A novel Random Walk Grey Wolf Optimizer

Swarm and Evolutionary Computation - Tập 44 - Trang 101-112 - 2019
Shubham Gupta1, Kusum Deep1
1Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India

Tài liệu tham khảo

Eberhart, 1995, A new optimizer using particle swarm theory, 39 Dorigo, 2006 Yang, 2010 Karaboga, 2007, 459 Bansal, 2014, 31 Mirjalili, 2016, The whale optimization algorithm, Adv. Eng. Software, 95, 51, 10.1016/j.advengsoft.2016.01.008 Mirjalili, 2014, Grey wolf optimizer, Adv. Eng. Software, 69, 46, 10.1016/j.advengsoft.2013.12.007 Wolpert, 1995, 1 Madadi, 2014, Optimal control of DC motor using grey wolf optimizer algorithm, TJEAS J. -2014-4-04/373-379, 4, 373 Muangkote, 2014, An improved grey wolf optimizer or training q-Gaussian Radial Basis Functional-link nets, 209 Song, 2015, Grey Wolf Optimizer for parameter estimation in surface waves, Soil Dynam. Earthq. Eng., 75, 147, 10.1016/j.soildyn.2015.04.004 El-Fergany, 2015, Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms, Elec. Power Compon. Syst., 43, 1548, 10.1080/15325008.2015.1041625 Mirjalili, 2015, How effective is the Grey Wolf optimizer in training multi-layer perceptrons, Appl. Intell., 43, 150, 10.1007/s10489-014-0645-7 Shakarami, 2016, Wide-area power system stabilizer design based on Grey Wolf Optimization algorithm considering the time delay, Elec. Power Syst. Res., 133, 149, 10.1016/j.epsr.2015.12.019 Guha, 2016, Load frequency control of interconnected power system using grey wolf optimization, Swarm Evolut. Comput., 27, 97, 10.1016/j.swevo.2015.10.004 Kamboj, 2016, Solution of non-convex economic load dispatch problem using Grey Wolf Optimizer, Neural Comput. Appl., 27, 1301, 10.1007/s00521-015-1934-8 Zhang, 2016, Grey wolf optimizer for unmanned combat aerial vehicle path planning, Adv. Eng. Software, 99, 121, 10.1016/j.advengsoft.2016.05.015 Jayabarathi, 2016, Economic dispatch using hybrid grey wolf optimizer, Energy, 111, 630, 10.1016/j.energy.2016.05.105 Yang, 2017, Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator based wind turbine, Energy Convers. Manag., 133, 427, 10.1016/j.enconman.2016.10.062 Lu, 2017, A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry, Eng. Appl. Artif. Intell., 57, 61, 10.1016/j.engappai.2016.10.013 Tawhid, 2017, A Hybrid grey wolf optimizer and genetic algorithm for minimizing potential energy function, Memet. Comput., 1 Emary, 2016, Binary grey wolf optimization approaches for feature selection, Neurocomputing, 172, 371, 10.1016/j.neucom.2015.06.083 Rodríguez, 2017, A fuzzy hierarchical operator in the grey wolf optimizer algorithm, Appl. Soft Comput., 57, 315, 10.1016/j.asoc.2017.03.048 Heidari, 2017, An efficient modified grey wolf optimizer with Lévy flight for optimization tasks, Appl. Soft Comput., 60, 115, 10.1016/j.asoc.2017.06.044 Mirjalili, 2016, Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization, Expert Syst. Appl., 47, 106, 10.1016/j.eswa.2015.10.039 Muro, 2011, Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations, Behav. Process., 88, 192, 10.1016/j.beproc.2011.09.006 Yang, 2010 Liang, 2013 Rashedi, 2009, GSA: a gravitational search algorithm, Inf. Sci., 179, 2232, 10.1016/j.ins.2009.03.004 Yang, 2009, Cuckoo search via Lévy flights, 210 Garg, 2016, Performance of Laplacian Biogeography-Based Optimization Algorithm on CEC 2014 continuous optimization benchmarks and camera calibration problem, Swarm Evolut. Comput., 27, 132, 10.1016/j.swevo.2015.10.006 Cheng, 2014, Symbiotic organisms search: a new metaheuristic optimization algorithm, Comput. Struct., 139, 98, 10.1016/j.compstruc.2014.03.007 Deep, 2007, A new mutation operator for real coded genetic algorithms, Appl. Math. Comput., 193, 211 Deb, 2000, An efficient constraint handling method for genetic algorithms, 186, 311 Das, 2011, Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems, Electronics, 1 Gandomi, 2013, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29, 17, 10.1007/s00366-011-0241-y Sadollah, 2013, Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13, 2592, 10.1016/j.asoc.2012.11.026 Sharma, 2012 Deb, 1996, A combined genetic adaptive search (GeneAS) for engineering design, Comput. Sci. Inf., 26, 30 Kannan, 1994, An augmented Lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design, J. Mech. Des., 116, 405 Li, 2012, A self-learning particle swarm optimizer for global optimization problems, IEEE Trans. Syst. Man, Cybern., Part B (Cybern.), 42, 627, 10.1109/TSMCB.2011.2171946 Liang, 2006, Comprehensive learning particle swarm optimizer for global optimization of multimodal functions, IEEE Trans. Evol. Comput., 10, 281, 10.1109/TEVC.2005.857610 Bergh, 2004, A cooperative approach to particle swarm optimization, IEEE Trans. Evol. Comput., 8, 225, 10.1109/TEVC.2004.826069 C. Maurice, 2007. [Online]. Available: http://www.particleswarm.info/Programs.html. Auger, 2005, A restart CMA evolution strategy with increasing population size, vol. 2, 1769 Coello, 2000, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41, 113, 10.1016/S0166-3615(99)00046-9 Arora, 2004 Belegundu, 1985, A study of mathematical programming methods for structural optimization. Part I: Theory, Int. J. Numer. Meth. Eng., 21, 1583, 10.1002/nme.1620210904 Coello, 2002, Constraint-handling in genetic algorithms through the use of dominance-based tournament selection, Adv. Eng. Inf., 16, 193, 10.1016/S1474-0346(02)00011-3 He, 2007, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20, 89, 10.1016/j.engappai.2006.03.003 Deb, 1997, GeneAS: a robust optimal design technique for mechanical component design, 497 Montes, 2008, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37, 443, 10.1080/03081070701303470 Sandgren, 1988, Nonlinear integer and discrete programming in mechanical design, 95