A novel QCA circuit-switched network with power dissipation analysis for nano communication applications
Tài liệu tham khảo
Vahabi, 2021, Design and implementation of new coplanar FA circuits without NOT gate and based on quantum-dot cellular automata technology, Appl. Sci., 11, 12157, 10.3390/app112412157
Das, 2017, Circuit switching with quantum-dot cellular automata, Nano Commun. Netw., 14, 16, 10.1016/j.nancom.2017.09.002
Orlov, 1997, Realization of a functional cell for quantum- dot cellular automata, Science, 277, 928, 10.1126/science.277.5328.928
Lent, 2000, Bypassing the transistor paradigm, Science, 288, 1597, 10.1126/science.288.5471.1597
Nejad, 2010, QCA: The prospective technology for digital telecommunication systems
Rahimi, 2012, Quasi-classical modeling of molecular quantum-dot cellular automata multidriver gates, Nanoscale Res. Lett., 7, 1, 10.1186/1556-276X-7-274
Rahimi, 2018, Molecular quantum cellular automata cell design trade-offs: latching vs, power dissipation, Phys. Chem. Chem. Phys., 20, 17881, 10.1039/C8CP02886A
Vahabi, 2021, Design and implementation of novel efficient full adder/subtractor circuits based on quantum-dot cellular automata technology, Appl. Sci., 11, 8717, 10.3390/app11188717
Lent, 1997, A device architecture for computing with quantum dots, Proc. IEEE, 85, 541, 10.1109/5.573740
Tougaw, 1994, Logical devices implemented using quantum cellular automata, J. Appl. Phys., 75, 1818, 10.1063/1.356375
Cho, 2007, Adder designs and analyses for quantum-dot cellular automata, IEEE Trans. Nanotechnol., 6, 374, 10.1109/TNANO.2007.894839
Vahabi, 2022, Novel reversible comparator design in quantum dot-cellular automata with power dissipation analysis, Appl. Sci., 12, 7846, 10.3390/app12157846
Heikalabad, 2019, Design and implementation of circuit-switched network based on nanoscale quantum-dot cellular automata, Photonic Netw. Commun., 38, 356, 10.1007/s11107-019-00864-w
Vahabi, 2022, Ultra-low-cost design of ripple carry adder to design nanoelectronics in QCA nanotechnology, Electronics, 11, 2320, 10.3390/electronics11152320
W. Wang, K. Walus, G.A. Jullien, Quantum-dot cellular automata adders, in: Proceedings of the 2003 Third IEEE Conference on Nanotechnology, San Francisco, CA, USA, 12–14 2003, vol. 1, 2003, pp. 461–464.
S.-H. Shin, J.-C. Jeon, K.-Y. Yoo, Wire-crossing technique on quantum-dot cellular automata, in: NGCIT2013, the 2nd International Conference on Next Generation Computer and Information Technology, Comput. Sci. vol. 27 (2013) 52–57.
Niemier, 2001, Problems in designing with QCAs: Layout = timing, Int. J. Circuit Theory Appl., 29, 49, 10.1002/1097-007X(200101/02)29:1<49::AID-CTA132>3.0.CO;2-1
Majeed, 2020, Optimal design of RAM cell using novel 2:1 multiplexer in QCA technology, Circuit World, 46, 147, 10.1108/CW-06-2019-0062
Khan, 2022, Energy estimation of QCA circuits: An investigation with multiplexers, J. Electr. Eng., 73, 276
Walus, 2004, QCADesigner: A rapid design and simulation tool for quantumdot cellular automata, IEEE Trans. Nanotechnol., 3, 26, 10.1109/TNANO.2003.820815
Khan, 2022, Towards the design and analysis of multiplexer/demultiplexer using quantum dot cellular automata for nano systems, J. New Mater. Electrochem. Syst., 25
S. Srivastava, A. Asthana, S. Bhanja, S. Sarkar, QCAPro-an error-power estimation tool for QCA circuit design, in: 2011 IEEE international symposium of circuits and systems (ISCAS), 2011, pp. 2377–2380.